Adaptive Computing - Page 2

cancel
Showing results for 
Search instead for 
Did you mean: 

Adaptive Computing - Page 2


Your source for Adaptive Computing announcements, customer success stories, industry trends, and more.


Across industries and around the globe, cutting-edge technologies require the rapid processing and transmission of vast amounts of data. Wired communications need infrastructure that can support an explosion of network traffic, which will only grow with the introduction of 800G Ethernet and beyond. In the data center, powerful recommendation engines and FinTech software require quick analysis of large data sets. And test engineers can never get enough compute power as they chase blazing-fast, next-generation protocol standards.

more
1 0 6,886

Front row seats.

Courtside at a basketball game.

Ringside at a boxing match.

On the glass at a hockey game.

Right behind home plate.

Experiences such as these put you right in front of the action. You can feel the emotion. You are fully immersed; there are no distractions.

This is the potential of 8K television.

more
2 0 3,683

The emergence of 8K cameras and the capture of higher resolution images is slowly driving the rest of the media workflow to handle 8K content. But the exponential costs of moving, processing, and storing the vast amounts of data associated with 8K content is causing many to question whether the return on investment in new equipment and infrastructure is worth it.

more
0 0 2,409

Technology continues to enable us to capture and share content with increasing fidelity as each generation of mobile phone, television, or camera is released. With the latest equipment, 8K ultra-high definition (8K UHD) is becoming more common amongst professionals and consumers alike. In our previous blog we discussed why and where 8K resolutions are being adopted today, as the leading edge of a larger wave of immersive media technology.   

more
3 0 25.7K

The adoption of 8K video creates new challenges for designers of equipment that need to ingest, process, and transmit 8K video.

To ingest and transmit 8K video, interfaces must deliver four times the bandwidth of their 4K predecessors, resulting in interfaces with more data lanes, higher speeds, or both. AMD Versal™ adaptive SoCs (System-on-Chips) are well suited to such interfaces (those with line rates of 20 Gbps or more) because they offer GTY or GTYP transceivers that are capable of rates up to 32 Gbps, which is a capability that was limited to only larger devices in the previous generation of adaptive SoCs. Examples of these high-rate interfaces include DisplayPort™ 2.1 and SMPTE ST 2110

more
0 0 2,032

Audio/Video (AV) interfaces are an integral part of any display system as they transfer the data required to stream content, play games, and show high-quality images. To the end-customer, they don’t appear to change, but these interfaces are continuously evolving to keep up with the latest display standards. Now that systems are moving from 4K to 8K (and beyond), they are handling more data than ever before, and standards are evolving to support that.  

more
2 0 4,983

8K has emerged as the latest standard in ultra-high definition (UHD) video, offering four times the resolution of 4K and sixteen times the resolution of Full HD (Figure 1). While it may have seemed like overkill at first, 8K video is gaining traction in professional media and emerging in consumer applications. In this blog series, we'll explore why 8K video is being adopted, its benefits and potential drawbacks, the technical challenges of connecting, processing and compressing 8K content, and how AMD platforms are enabling the next wave of immersive viewing capabilities.  

more
3 0 2,021

Industry 5.0 is revolutionizing manufacturing. Future 6G wireless networks will connect us in new and exciting ways. And artificial intelligence is poised to transform every part of our lives.

We don’t yet know how advances in these and other areas will change our world. But we do know that AMD, building on years of leadership from Xilinx, will be there to help enable every groundbreaking technology that innovators dream up.

AMD acts as a catalyst, making next-generation compute technology a reality through high-performance emulation and prototyping. Time after time, we build breakthrough hardware—adaptive SoCs and FPGAs—designed to facilitate verification of increasingly complex semiconductors and shift software validation to the left in the design cycle.

 

more
0 0 3,468

AMD is excited to announce the Spartan™ UltraScale+™ FPGA, our newest cost-optimized FPGA. Ideal for cost-sensitive applications requiring low power and high I/O, this new family targets a wide range of industries, including Industrial, Robotics, Smart City, Computer Vision, Healthcare, Video and Broadcast, and more.

more
16 1 24K

As digital signal processing (DSP) compute requirements grow to support everything from radar systems and medical imaging to high-performance test equipment and 5G wireless systems, so does the need for computing solutions that deliver on performance and power requirements.  

When exploring the implementation of these solutions, using ASICs with fixed functions can mean additional hardware and software redesigns. With a rich set of hardware-accelerated open-source libraries accessible through design tools, SoCs and FPGAs unleash a more efficient and flexible path to meet evolving demands.  

more
0 0 2,850