AMD ¢t

Innovative
technologies to
render your world.

ProRender

PRORENDER HYBRID
RENDERING IN PRACTICE

DMITRY KOZLOV, AMD




Agenda

Requirements

Hybrid engine modes

Raster

Hybrid

Biased path tracing
Raytraced effects

Reflection / refraction

Ambient occlusion

Area lighting and shadowing

Demo

AMDZ1



Requirements

Radeon ProRender
High quality unbiased path tracer
Good at final rendering and complex scenes / materials

Not that good at preview rendering and simple scenes / materials
Noise

High latency in an attempt to reduce variance as quick as possible
Dynamic geometry

What to do?

We need something fast and noise free for viewport / quick preview
Realtime

As accurate as possible given time budget

Time budget differs for different GPUs models / generations

AMDZ1



Hybrid engine

Highly scalable rendering framework
Flexible and intuitive performance-quality tradeoff (game-like quality settings)
None to minimum amount of noise for all quality levels
Clever rendering — spend time on complex things, fill the rest using ML or deterministic filters
Covers broad range of AMD hardware

Flexible presets
High performance and high quality raster preview — noise free
Hybrid ray-traced viewport — noise free, deterministically filtered
Biased Monte-Carlo path tracer — minimum noise, ML filtered

Highly optimized for dynamic geometry / scene changes
Fast acceleration structure builds
Fast updates
Material / lighting changes

AMDZ1



Hybrid engine

Based on Vulkan 1.1

Works on any Vulkan 1.1 compatible hardware

Benefits from exclusive AMD hardware features:
Async compute
Shader ballot
Descriptor indexing
External memory
Spares resources

Uses RadeonRaysNext for ray casting

AMDZ1



AMDZ1



Radeon ProRender Building Blocks

Visibility solvers
Hardware rasterization
Ray tracing
Voxel ray tracing / cone tracing

lllumination solvers

Approximate PBR (shadow maps, split
sum)

Monte-Carlo path tracing
Voxel gather

Dynamic lightmaps

Denoisers

Deterministic denoisers (EAW, SVGF)
ML denoising autoencoder
FidelityFX upscaler

\ ; \
A
y ' X
. =
| AN
V4 w b
¥

AMDZ1



Radeon ProRender Raster

Clustered deferred renderer
Analytic and physical lights

PBR uber material
GGX coating
GGX reflection
Lambert diffuse
Tranparency / refraction

Reflections
Pre-computed IBL (split sum)
Screen space reflections

Transparency
Weighted OIT

Gl
Dynamic lightmaps
Voxel cone tracing

TAA




Radeon ProRender Hybrid

Thin visibility buffer
. Depth

Normal
Texcoord
Barycentrics
Object ID
Material ID
Derivatives

Reflections —-—
Stochastic ray tracing

Multistage spatiotemporal
denoiser

Refraction
Ray tracing

Area lighting "\
Gl

Lightmaps
Voxel cone tracing



Radeon ProRender Path Tracer

Wavefront path tracer
Based on RadeonRays
Aggressive compaction

e}
Full global illumination
Multiple importance sampling
Lightmaps
Voxels

Denoise

DirectML based denoising
autoencoder




Radeon ProRender: Reflections requirements

GGX BRDF lobe
. Variable roughness support
Can’t trace more than 1spp at half resolution

Need to preserve fine details

AMDZ1



Radeon ProRender Usecase

Light transport equation

F is a complex material function
IOR or metalness modes
Up to 2 reflection layers

Denoise each layer separately
Use split-sum approx.
Precompute R * cos LUT

Calculate and denoise L at
runtime

: Reflections

L(w,) = J L;(w;)F(w,,w;) cos 0 dw;
L(WO) "o f LL(WL)(C +R+ D + RF) cos 6 dWi

Lr(w,) = j Li(w;)R(w,,w;) cos 8 dw; =~

l

Q
Q

Q

L;(w;) dw; f R(w,,w;) cos 6 dw;
O

AMDZ1



Radeon ProRender: Reflections

Rasterize primary visibility buffer:
Thin G-buffer: depth, normal, barycentrics,
primitive 1D, shape ID, derivatives

Spawn rays from G-buffer:
Use reconstructed world space position, normal
and GGX roughness
Use importance sampling using distribution of
visible normal (Heitz 2014)

Variable rate ray generation and shading:

Split G-buffer in tiles
Spawn different number of rays based on
estimated reflection importance in a tile

Red: 1spp, blue: 1/4spp, green: 1/16 spp

UG 1 J "-"'.‘u T'l.'}
e ‘1! -—-'-‘ ';- wi mél

i, vy

AMDZ1



Radeon ProRender: Reflections

Raw result




I0NS

Reflecti

Radeon ProRender

lal denoise

Spat

AMDZ1



Radeon ProRender: Reflections

. Temporal filter




Radeon ProRender: Reflections




Radeon ProRender: Reflections

Final result

AMDZ1



Radeon ProRender: Ambient occlusion

Use cosine distribution to spawn
1spp at half resolution
Blue noise sampling

Use occlusion query instead of a
closest hit

Denoise result:
Reprojection
Bilateral filter
Temporal accumulation

AMDZ1



Radeon ProRender: Area lighting and shadowing

- Split area light integral into two parts:

BaEs f Li(@) G (@) f (g, )V (@) dA;
A

%f Li(wi)ft(wo»wi)G(wi)dAij V(w;)dA;
3 A

- Use LTC (Heitz et al. 16) to compute lighting fA Li(w;) fi(w,, w;)G(w;)dA;

- Use raytracing + denoising to compute visibility fA V(w;)dA;

AMDZ1



Radeon ProRender: Area lighting and shadowing

AMDZ1



Radeon ProRender: Reflections + AO + area lighting

AMDZ1



Conclusion

New Radeon ProRender backend
Vulkan 1.1
Performance-quality tradeoff
Optimized for AMD hardware
Cross platform
Cross vendor
Available for Blender 2.8+

Visit
https://www.amd.com/en/technologi
es/radeon-prorender-downloads



https://www.amd.com/en/technologies/radeon-prorender-downloads

