9.11.6 Issues

1. How should the OpenGL context be identified when creating an associated OpenCL context?

RESOLVED: by using a (display,context handle) attribute pair to identify an arbitrary OpenGL

or OpenGL ES context with respect to one of the window-system binding layers EGL, GLX, or
WGL, or a share group handle to identify a CGL share group. If a context is specified, it need not,
be current to the thread calling clCreateContext™.

— e

A previously suggested approach would use a single boolean attribute

CL_USE _GL_CONTEXT KHR to allow creating a context associated with the currently bound
OpenGL context. This may still be implemented as a separate extension, and might allow more
efficient acquire/release behavior in the special case where they are being executed in the same
thread as the bound GL context used to create the CL context.

2. What should the format of an attribute list be?

After considerable discussion, we think we can live with a list of <attribute name,value> pairs
terminated by zero. The list is passed as 'cl_context properties *properties’, where
cl _context properties is typedefed to be 'intptr t'in clL.h.

This effectively allows encoding all scalar integer, pointer, and handle values in the host API
into the argument list and is analogous to the structure and type of EGL attribute lists. NULL
attribute lists are also allowed. Again as for EGL, any attributes not explicitly passed in the list
will take on a defined default value that does something reasonable.

Experience with EGL, GLX, and WGL has shown attribute lists to be a sufficiently flexible and
general mechanism to serve the needs of management calls such as context creation. It is not
completely general (encoding floating-point and non-scalar attribute values is not
straightforward), and other approaches were suggested such as opaque attribute lists with
getter/setter methods, or arrays of varadic structures.

3. What's the behavior of an associated OpenGL or OpenCL context when using resources
defined by the other associated context, and that context is destroyed?

RESOLVED: As described in section 9.12, OpenCL objects place a reference on the data store
underlying the corresponding GL object when they're created. The GL name corresponding to
that data store may be deleted, but the data store itself remains so long as any CL object has a
reference to it.

However, destroying all GL contexts in the share group corresponding to a CL context results in
implementation-dependent behavior when using a corresponding CL object, up to and including

program termination.

4. How about sharing with D3D?

Last Revision Date: 10/6/09 Page 276


ahamuraru
Pencil

ahamuraru
Pencil




