

Last Revision Date: 11/13/11 Page 1

The OpenCL Extension Specification

Version: 1.2

Document Revision: 15

Khronos OpenCL Working Group

Editor: Aaftab Munshi

Last Revision Date: 11/13/11 Page 2

9.	
 OPTIONAL EXTENSIONS ... 5	

9.1	
 Compiler Directives for Optional Extensions .. 6	

9.2	
 Getting OpenCL API Extension Function Pointers .. 7	

9.3	
 64-bit Atomics ... 10	

9.4	
 Writing to 3D image memory objects ... 12	

9.5	
 Half Precision Floating-Point .. 14	

9.5.1	
 Conversions ... 14	

9.5.2	
 Math Functions ... 15	

9.5.3	
 Common Functions ... 20	

9.5.4	
 Geometric Functions ... 21	

9.5.5	
 Relational Functions ... 22	

9.5.6	
 Vector Data Load and Store Functions ... 24	

9.5.7	
 Async Copies from Global to Local Memory, Local to Global Memory, and Prefetch 24	

9.5.8	
 Image Read and Write Functions .. 27	

9.5.9	
 IEEE754 Compliance .. 35	

9.5.10	
 Relative Error as ULPs ... 36	

9.6	
 Creating CL context from a GL context or share group .. 39	

9.6.1	
 Overview ... 39	

9.6.2	
 New Procedures and Functions ... 39	

9.6.3	
 New Tokens .. 39	

9.6.4	
 Additions to Chapter 4 of the OpenCL 1.2 Specification ... 40	

9.6.5	
 Additions to section 9.7 of the OpenCL 1.2 Extension Specification .. 42	

9.6.6	
 Issues ... 45	

9.7	
 Sharing Memory Objects with OpenGL / OpenGL ES Buffer, Texture and Renderbuffer
Objects .. 48	

9.7.1	
 Lifetime of Shared Objects ... 48	

9.7.2	
 CL Buffer Objects à GL Buffer Objects ... 49	

9.7.3	
 CL Image Objects à GL Textures ... 50	

9.7.3.1	
 List of OpenGL and corresponding OpenCL Image Formats .. 52	

9.7.4	
 CL Image Objects à GL Renderbuffers .. 53	

9.7.5	
 Querying GL object information from a CL memory object .. 54	

9.7.6	
 Sharing memory objects that map to GL objects between GL and CL contexts .. 56	

9.7.6.1	
 Synchronizing OpenCL and OpenGL Access to Shared Objects .. 59	

9.8	
 Creating CL event objects from GL sync objects ... 61	

9.8.1	
 Overview ... 61	

9.8.2	
 New Procedures and Functions ... 61	

9.8.3	
 New Tokens .. 61	

9.8.4	
 Additions to Chapter 5 of the OpenCL 1.2 Specification ... 61	

9.8.5	
 Additions to Chapter 9 of the OpenCL 1.2 Specification ... 63	

9.8.6	
 Issues ... 64	

9.9	
 Sharing Memory Objects with Direct3D 10 .. 66	

9.9.1	
 Overview ... 66	

9.9.2	
 Header File .. 66	

Last Revision Date: 11/13/11 Page 3

9.9.3	
 New Procedures and Functions ... 66	

9.9.4	
 New Tokens .. 67	

9.9.5	
 Additions to Chapter 4 of the OpenCL 1.2 Specification ... 68	

9.9.6	
 Additions to Chapter 5 of the OpenCL 1.2 Specification ... 69	

9.9.7	
 Sharing Memory Objects with Direct3D 10 Resources .. 70	

9.9.7.1	
 Querying OpenCL Devices Corresponding to Direct3D 10 Devices .. 71	

9.9.7.2	
 Lifetime of Shared Objects .. 72	

9.9.7.3	
 Sharing Direct3D 10 Buffer Resources as OpenCL Buffer Objects .. 73	

9.9.7.4	
 Sharing Direct3D 10 Texture and Resources as OpenCL Image Objects .. 74	

9.9.7.5	
 Querying Direct3D properties of memory objects created from Direct3D 10 resources 77	

9.9.7.6	
 Sharing memory objects created from Direct3D 10 resources between Direct3D 10 and OpenCL contexts 77	

9.9.8	
 Issues ... 81	

9.10	
 DX9 Media Surface Sharing ... 83	

9.10.1	
 Overview ... 83	

9.10.2	
 Header File .. 83	

9.10.3	
 New Procedures and Functions ... 83	

9.10.4	
 New Tokens .. 84	

9.10.5	
 Additions to Chapter 4 of the OpenCL 1.2 Specification ... 85	

9.10.6	
 Additions to Chapter 5 of the OpenCL 1.2 Specification ... 86	

9.10.7	
 Sharing Media Surfaces with OpenCL ... 87	

9.10.7.1	
 Querying OpenCL Devices corresponding to Media Adapters ... 87	

9.10.7.2	
 Creating Media Resources as OpenCL Image Objects .. 89	

9.10.7.3	
 Querying Media Surface Properties of Memory Objects created from Media Surfaces 91	

9.10.7.4	
 Sharing Memory Objects created from Media Surfaces between a Media Adapter and OpenCL 92	

9.10.7.5	
 Surface formats for Media Suface Sharing .. 95	

9.11	
 Sharing Memory Objects with Direct3D 11 .. 97	

9.11.1	
 Overview ... 97	

9.11.2	
 Header File .. 97	

9.11.3	
 New Procedures and Functions ... 97	

9.11.4	
 New Tokens .. 98	

9.11.5	
 Additions to Chapter 4 of the OpenCL 1.2 Specification ... 99	

9.11.6	
 Additions to Chapter 5 of the OpenCL 1.2 Specification ... 100	

9.11.7	
 Sharing Memory Objects with Direct3D 11 Resources .. 101	

9.11.7.1	
 Querying OpenCL Devices Corresponding to Direct3D 11 Devices .. 102	

9.11.7.2	
 Lifetime of Shared Objects .. 103	

9.11.7.3	
 Sharing Direct3D 11 Buffer Resources as OpenCL Buffer Objects .. 104	

9.11.7.4	
 Sharing Direct3D 11 Texture and Resources as OpenCL Image Objects .. 105	

9.11.7.5	
 Querying Direct3D properties of memory objects created from Direct3D 11 resources 108	

9.11.7.6	
 Sharing memory objects created from Direct3D 11 resources between Direct3D 11 and OpenCL contexts ... 108	

9.12	
 OpenCL Installable Client Driver (ICD) ... 113	

9.12.1	
 Overview ... 113	

9.12.2	
 Inferring Vendors from Function Calls from Arguments ... 113	

9.12.3	
 ICD Data ... 114	

9.12.4	
 ICD Loader Vendor Enumeration on Windows ... 114	

9.12.5	
 ICD Loader Vendor Enumeration on Linux ... 114	

9.12.6	
 Adding a Vendor Library .. 114	

9.12.7	
 New Procedures and Functions ... 115	

9.12.8	
 New Tokens .. 115	

9.12.9	
 Additions to Chapter 4 of the OpenCL 1.2 Specification ... 115	

9.12.10	
 Additions to Chapter 9 of the OpenCL 1.2 Extension Specification .. 116	

9.12.11	
 Issues ... 117	

INDEX - APIS ... 118	

Last Revision Date: 11/13/11 Page 4

Copyright (c) 2008-2011 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the
Khronos Group, Inc. It or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior
written permission of Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or other notice from
the specification, but the receipt or possession of this specification does not convey any rights to
reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may
describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any
fashion, provided that NO CHARGE is made for the specification and the latest available update
of the specification for any version of the API is used whenever possible. Such distributed
specification may be re-formatted AS LONG AS the contents of the specification are not
changed in any way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link to the
current version of this specification on the Khronos Group web-site should be included whenever
possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual
property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or representatives be
liable for any damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos, StreamInput, WebGL, COLLADA, OpenKODE, OpenVG, OpenWF, OpenSL ES,
OpenMAX, OpenMAX AL, OpenMAX IL and OpenMX DL are trademarks and WebCL is a
certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL
and OpenML are registered trademarks and the OpenGL ES and OpenGL SC logos are
trademarks of Silicon Graphics International used under license by Khronos. All other product
names, trademarks, and/or company names are used solely for identification and belong to their
respective owners.

Last Revision Date: 11/13/11 Page 5

9. Optional Extensions1

This document describes the list of optional features supported by OpenCL 1.2. Optional
extensions may be supported by some OpenCL devices. Optional extensions are not required to
be supported by a conformant OpenCL implementation, but are expected to be widely available;
they define functionality that is likely to move into the required feature set in a future revision of
the OpenCL specification. A brief description of how OpenCL extensions are defined is
provided below.

For OpenCL extensions approved by the OpenCL working group, the following naming
conventions are used:

 A unique name string of the form "cl_khr_<name>" is associated with each extension. If
the extension is supported by an implementation, this string will be present in the
CL_PLATFORM_EXTENSIONS or CL_DEVICE_EXTENSIONS string described in table
4.3.

 All API functions defined by the extension will have names of the form

cl<FunctionName>KHR.

 All enumerants defined by the extension will have names of the form
CL_<enum_name>_KHR.

OpenCL extensions approved by the OpenCL working group can be promoted to required core
features in later revisions of OpenCL. When this occurs, the extension specifications are merged
into the core specification. Functions and enumerants that are part of such promoted extensions
will have the KHR affix removed. OpenCL implementations of such later revisions must also
export the name strings of promoted extensions in the CL_PLATFORM_EXTENSIONS or
CL_DEVICE_EXTENSIONS string, and support the KHR-affixed versions of functions and
enumerants as a transition aid.

For vendor extensions, the following naming conventions are used:

 A unique name string of the form "cl_<vendor_name>_<name>" is associated with each
extension. If the extension is supported by an implementation, this string will be present
in the CL_PLATFORM_EXTENSIONS or CL_DEVICE_EXTENSIONS string described in
table 4.3.

 All API functions defined by the vendor extension will have names of the form

cl<FunctionName><vendor_name>.

1 This document describes section 9 of the OpenCL 1.2 specification. Any reference to section
1.x – 8.x or tables 1.x – 8.x in this document refer to sections and tables described in the OpenCL
1.2 specification.

Last Revision Date: 11/13/11 Page 6

 All enumerants defined by the vendor extension will have names of the form
CL_<enum_name>_<vendor_name>.

9.1 Compiler Directives for Optional Extensions

The #pragma OPENCL EXTENSION directive controls the behavior of the OpenCL compiler
with respect to extensions. The #pragma OPENCL EXTENSION directive is defined as:

#pragma OPENCL EXTENSION extension_name : behavior
#pragma OPENCL EXTENSION all : behavior

where extension_name is the name of the extension. The extension_name will have names of the
form cl_khr_<name> for an extension approved by the OpenCL working group and will have
names of the form cl_<vendor_name>_<name> for vendor extensions. The token all means that
the behavior applies to all extensions supported by the compiler. The behavior can be set to one
of the following values given by the table below.

behavior Description
enable Behave as specified by the extension extension_name.

Report an error on the #pragma OPENCL EXTENSION if the
extension_name is not supported, or if all is specified.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the non-extended
core version of the language being compiled to.

Warn on the #pragma OPENCL EXTENSION if the extension
extension_name is not supported.

The #pragma OPENCL EXTENSION directive is a simple, low-level mechanism to set the
behavior for each extension. It does not define policies such as which combinations are
appropriate; those must be defined elsewhere. The order of directives matter in setting the
behavior for each extension. Directives that occur later override those seen earlier. The all
variant sets the behavior for all extensions, overriding all previously issued extension directives,
but only if the behavior is set to disable.

The initial state of the compiler is as if the directive

 #pragma OPENCL EXTENSION all : disable

was issued, telling the compiler that all error and warning reporting must be done according to
this specification, ignoring any extensions.

Last Revision Date: 11/13/11 Page 7

Every extension which affects the OpenCL language semantics, syntax or adds built-in functions
to the language must create a preprocessor #define that matches the extension name string.
This #define would be available in the language if and only if the extension is supported on a
given implementation.

Example:

An extension which adds the extension string "cl_khr_3d_image_writes" should also add
a preprocessor #define called cl_khr_3d_image_writes. A kernel can now use this
preprocessor #define to do something like:

#ifdef cl_khr_3d_image_writes
// do something using the extension

#else
// do something else or #error!

#endif

9.2 Getting OpenCL API Extension Function
Pointers

The function

 void* clGetExtensionFunctionAddressForPlatform2 (
 cl_platform_id platform,
 const char *funcname)

returns the address of the extension function named by funcname for a given platform The
pointer returned should be cast to a function pointer type matching the extension function’s
definition defined in the appropriate extension specification and header file. A return value of
NULL indicates that the specified function does not exist for the implementation or platform is
not a valid platform. A non-NULL return value for
clGetExtensionFunctionAddressForPlatform does not guarantee that an extension function is
actually supported by the platform. The application must also make a corresponding query using
clGetPlatformInfo(platform, CL_PLATFORM_EXTENSIONS, …) or clGetDeviceInfo(device,
CL_DEVICE_EXTENSIONS, …) to determine if an extension is supported by the OpenCL
implementation.

clGetExtensionFunctionAddressForPlatform may not be queried for core (non-extension)
functions in OpenCL. For functions that are queryable with

2 Since there is no way to qualify the query with a device, the function pointer returned must work for all
implementations of that extension on different devices for a platform. The behavior of calling a device extension
function on a device not supporting that extension is undefined.

Last Revision Date: 11/13/11 Page 8

clGetExtensionFunctionAddressForPlatform, implementations may choose to also export
those functions statically from the object libraries implementing those functions. However,
portable applications cannot rely on this behavior.

Function pointer typedefs must be declared for all extensions that add API entrypoints. These
typedefs are a required part of the extension interface, to be provided in an appropriate header
(such as cl_ext.h if the extension is an OpenCL extension, or cl_gl_ext.h if the
extension is an OpenCL / OpenGL sharing extension).

The following convention must be followed for all extensions affecting the host API:

#ifndef extension_name
#define extension_name 1

// all data typedefs, token #defines, prototypes, and
// function pointer typedefs for this extension

 // function pointer typedefs must use the

// following naming convention
typedef CL_API_ENTRY return type

(CL_API_CALL *clextension_func_nameTAG_fn)(…);

#endif // extension_name

where TAG can be KHR, EXT or vendor-specific.

Consider, for example, the cl_khr_gl_sharing extension. This extension would add the
following to cl_gl_ext.h:

#ifndef cl_khr_gl_sharing
#define cl_khr_gl_sharing 1

// all data typedefs, token #defines, prototypes, and
// function pointer typedefs for this extension
#define CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR -1000
#define CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR 0x2006
#define CL_DEVICES_FOR_GL_CONTEXT_KHR 0x2007
#define CL_GL_CONTEXT_KHR 0x2008
#define CL_EGL_DISPLAY_KHR 0x2009
#define CL_GLX_DISPLAY_KHR 0x200A
#define CL_WGL_HDC_KHR 0x200B
#define CL_CGL_SHAREGROUP_KHR 0x200C

 // function pointer typedefs must use the

// following naming convention
typedef CL_API_ENTRY cl_int

(CL_API_CALL *clGetGLContextInfoKHR_fn)(
const cl_context_properties * /* properties */,
cl_gl_context_info /* param_name */,
size_t /* param_value_size */,

Last Revision Date: 11/13/11 Page 9

void * /* param_value */,
size_t * /*param_value_size_ret*/);

#endif // cl_khr_gl_sharing

Last Revision Date: 11/13/11 Page 10

9.3 64-bit Atomics

The optional extensions cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics
implement atomic operations on 64-bit signed and unsigned integers to locations in __global
and __local memory. .

An application that wants to use any of these extensions will need to include the #pragma
OPENCL EXTENSION cl_khr_int64_base_atomics : enable or #pragma
OPENCL EXTENSION cl_khr_int64_extended_atomics : enable directive in
the OpenCL program source. The atomic functions supported by the
cl_khr_int64_base_atomics extension are described in table 9.1. All of the functions listed in
table 9.1 are performed in one atomic transaction. The atomic functions supported by the
cl_khr_int64_extended_atomics extension are described in table 9.2. All of the functions listed
in table 9.2 are performed in one atomic transaction.

These transactions are atomic for the device executing these atomic functions. There is no
guarantee of atomicity if the atomic operations to the same memory location are being performed
by kernels executing on multiple devices.

Function Description
long atom_add (volatile __global long *p, long val)
long atom_add (volatile __local long *p, long val)

ulong atom_add (volatile __global ulong *p, ulong val)
ulong atom_add (volatile __local ulong *p, ulong val)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute (old + val) and
store result at location pointed by
p. The function returns old.

long atom_sub (volatile __global long *p, long val)
long atom_sub (volatile __local long *p, long val)

ulong atom_sub (volatile __global ulong *p, ulong val)
ulong atom_sub (volatile __local ulong *p, ulong val)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute (old - val) and
store result at location pointed by
p. The function returns old.

long atom_xchg (volatile __global long *p, long val)
long atom_xchg (volatile __local long *p, long val)

ulong atom_xchg (volatile __global ulong *p, ulong val)
ulong atom_xchg (volatile __local ulong *p, ulong val)

Swaps the old value stored at
location p with new value given by
val. Returns old value.

long atom_inc (volatile __global long *p)
long atom_inc (volatile __local long *p)

ulong atom_inc (volatile __global ulong *p)
ulong atom_inc (volatile __local ulong *p)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute (old + 1) and store
result at location pointed by p.
The function returns old.

long atom_dec (volatile __global long *p)
long atom_dec (volatile __local long *p)

ulong atom_dec (volatile __global ulong *p)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute (old - 1) and store
result at location pointed by p.

Last Revision Date: 11/13/11 Page 11

ulong atom_dec (volatile __local ulong *p) The function returns old.
long atom_cmpxchg (volatile __global long *p,
 long cmp, long val)
long atom_cmpxchg (volatile __local long *p,
 long cmp, long val)

ulong atom_cmpxchg (volatile __global ulong *p,
 ulong cmp, ulong val)
ulong atom_cmpxchg (volatile __local ulong *p,
 ulong cmp, ulong val)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute (old == cmp) ? val
: old and store result at location
pointed by p. The function returns
old.

 Table 9.1 Built-in Atomic Functions for cl_khr_int64_base_atomics extension

Function Description
long atom_min (volatile __global long *p, long val)
long atom_min (volatile __local long *p, long val)

ulong atom_min (volatile __global ulong *p, ulong val)
ulong atom_min (volatile __local ulong *p, ulong val)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute min(old, val) and
store minimum value at location
pointed by p. The function returns
old.

long atom_max (volatile __global long *p, long val)
long atom_max (volatile __local long *p, long val)

ulong atom_max (volatile __global ulong *p, ulong val)
ulong atom_max (volatile __local ulong *p, ulong val)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute max(old, val) and
store maximum value at location
pointed by p. The function returns
old.

long atom_and (volatile __global long *p, long val)
long atom_and (volatile __local long *p, long val)

ulong atom_and (volatile __global ulong *p, ulong val)
ulong atom_and (volatile __local ulong *p, ulong val)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute (old & val) and
store result at location pointed by
p. The function returns old.

long atom_or (volatile __global long *p, long val)
long atom_or (volatile __local long *p, long val)

ulong atom_or (volatile __global ulong *p, ulong val)
ulong atom_or (volatile __local ulong *p, ulong val)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute (old | val) and
store result at location pointed by
p. The function returns old.

long atom_xor (volatile __global long *p, long val)
long atom_xor (volatile __local long *p, long val)

ulong atom_xor (volatile __global ulong *p, ulong val)
ulong atom_xor (volatile __local ulong *p, ulong val)

Read the 64-bit value (referred to
as old) stored at location pointed
by p. Compute (old ^ val) and
store result at location pointed by
p. The function returns old.

 Table 9.2 Built-in Atomic Functions for cl_khr_int64_extended_atomics extension

Note: Atomic operations on 64-bit integers and 32-bit integers (and float) are also atomic w.r.t.
each other.

Last Revision Date: 11/13/11 Page 12

9.4 Writing to 3D image memory objects

OpenCL supports 2D image memory objects that can be read or written by kernels. Reads and
writes to the same 2D image memory object are not supported in a kernel. OpenCL also
supports reads to 3D image memory objects in kernels. Writes to a 3D image memory object are
not supported unless the cl_khr_3d_image_writes extension is implemented. Reads and
writes to the same 3D image memory object are not allowed in a kernel.

An application that wants to use this extension to write to 3D image memory objects will need to
include the #pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable
directive in the OpenCL program source.

The built-in functions implemented by the cl_khr_3d_image_writes extension are
described in the table below.

Function Description
void write_imagef (image3d_t image,
 int4 coord,
 float4 color)

void write_imagei (image3d_t image,
 int4 coord,
 int4 color)

void write_imageui (image3d_t image,
 int4 coord,
 uint4 color)

Write color value to location specified by
coordinate (x, y, z) in the 3D image object
specified by image. Appropriate data format
conversion to the specified image format is done
before writing the color value. coord.x, coord.y
and coord.z are considered to be unnormalized
coordinates and must be in the range 0 ... image
width – 1, 0 … image height – 1 and 0 … image
depth – 1.

write_imagef can only be used with image
objects created with image_channel_data_type
set to one of the pre-defined packed formats or set
to CL_SNORM_INT8, CL_UNORM_INT8,
CL_SNORM_INT16, CL_UNORM_INT16,
CL_HALF_FLOAT or CL_FLOAT. Appropriate
data format conversion will be done to convert
channel data from a floating-point value to actual
data format in which the channels are stored.

write_imagei can only be used with image
objects created with image_channel_data_type
set to one of the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.

write_imageui can only be used with image

Last Revision Date: 11/13/11 Page 13

objects created with image_channel_data_type
set to one of the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.

The behavior of write_imagef, write_imagei and
write_imageui for image objects with
image_channel_data_type values not specified in
the description above or with (x, y, z) coordinate
values that are not in the range (0 … image width
– 1, 0 … image height – 1, 0 … image depth – 1)
respectively is undefined.

Last Revision Date: 11/13/11 Page 14

9.5 Half Precision Floating-Point

This extension adds support for half scalar and vector types as built-in types that can be used for
arithmetic operations, conversions etc. An application that wants to use half and halfn types
will need to include the #pragma OPENCL EXTENSION cl_khr_fp16 : enable
directive.

The list of built-in scalar, and vector data types defined in tables 6.1, and 6.2 are extended to
include the following:

Type Description
half2 A 2-component half-precision floating-point vector.
half3 A 3-component half-precision floating-point vector.
half4 A 4-component half-precision floating-point vector.
half8 A 8-component half-precision floating-point vector.
half16 A 16-component half-precision floating-point vector.

The built-in vector data types for halfn are also declared as appropriate types in the OpenCL
API (and header files) that can be used by an application. The following table describes the
built-in vector data types for halfn as defined in the OpenCL C programming language and the
corresponding data type available to the application:

Type in OpenCL Language API type for application
half2 cl_half2
half 3 cl_half3
half 4 cl_half4
half 8 cl_half8
half16 cl_half16

The relational, equality, logical and logical unary operators described in section 6.3 can be used
with half scalar and halfn vector types and shall produce a scalar int and vector shortn
result respectively.

The OpenCL compiler accepts an h and H suffix on floating point literals, indicating the literal is
typed as a half .

9.5.1 Conversions

The implicit conversion rules specified in section 6.2.1 now include the half scalar and halfn
vector data types.

The explicit casts described in section 6.2.2 are extended to take a half scalar data type and a

Last Revision Date: 11/13/11 Page 15

halfn vector data type.

The explicit conversion functions described in section 6.2.3 are extended to take a half scalar
data type and a halfn vector data type.

The as_typen() function for re-interpreting types as described in section 6.2.4.2 is extended
to allow conversion-free casts between shortn, ushortn and halfn scalar and vector data
types.

9.5.2 Math Functions

The built-in math functions defined in table 6.8 (also listed below) are extended to include
appropriate versions of functions that take half, and half{2|3|4|8|16} as arguments
and return values. gentype now also includes half, half2, half3, half4, half8
and half16.

For any specific use of a function, the actual type has to be the same for all arguments and the
return type.

Function Description
gentype acos (gentype) Arc cosine function.
gentype acosh (gentype) Inverse hyperbolic cosine.
gentype acospi (gentype x) Compute acos (x) / π.
gentype asin (gentype) Arc sine function.
gentype asinh (gentype) Inverse hyperbolic sine.
gentype asinpi (gentype x) Compute asin (x) / π.
gentype atan (gentype y_over_x) Arc tangent function.
gentype atan2 (gentype y, gentype x) Arc tangent of y / x.
gentype atanh (gentype) Hyperbolic arc tangent.
gentype atanpi (gentype x) Compute atan (x) / π.
gentype atan2pi (gentype y, gentype x) Compute atan2 (y, x) / π.
gentype cbrt (gentype) Compute cube-root.
gentype ceil (gentype) Round to integral value using the round to positive

infinity rounding mode.
gentype copysign (gentype x, gentype y) Returns x with its sign changed to match the sign of

y.
gentype cos (gentype) Compute cosine.
gentype cosh (gentype) Compute hyperbolic consine.
gentype cospi (gentype x) Compute cos (π x).
gentype erfc (gentype) Complementary error function.
gentype erf (gentype) Error function encountered in integrating the

normal distribution.

Last Revision Date: 11/13/11 Page 16

gentype exp (gentype x) Compute the base- e exponential of x.
gentype exp2 (gentype) Exponential base 2 function.
gentype exp10 (gentype) Exponential base 10 function.
gentype expm1 (gentype x) Compute ex- 1.0.
gentype fabs (gentype) Compute absolute value of a floating-point number.
gentype fdim (gentype x, gentype y) x - y if x > y, +0 if x is less than or equal to y.
gentype floor (gentype) Round to integral value using the round to negative

infinity rounding mode.
gentype fma (gentype a,
 gentype b, gentype c)

Returns the correctly rounded floating-point
representation of the sum of c with the infinitely
precise product of a and b. Rounding of
intermediate products shall not occur. Edge case
behavior is per the IEEE 754-2008 standard.

gentype fmax (gentype x, gentype y)

gentype fmax (gentype x, half y)

Returns y if x < y, otherwise it returns x. If one
argument is a NaN, fmax() returns the other
argument. If both arguments are NaNs, fmax()
returns a NaN.

gentype fmin (gentype x, gentype y)

gentype fmin (gentype x, half y)

Returns y if y < x, otherwise it returns x. If one
argument is a NaN, fmin() returns the other
argument. If both arguments are NaNs, fmin()
returns a NaN.

gentype fmod (gentype x, gentype y) Modulus. Returns x – y * trunc (x/y) .
gentype fract (gentype x,
 __global gentype *iptr)
gentype fract (gentype x,
 __local gentype *iptr)
gentype fract (gentype x,
 __private gentype *iptr)

Returns fmin(x – floor (x), 0x1.ffcp-1f).
floor(x) is returned in iptr.

halfn frexp (halfn x,
 __global intn *exp)
halfn frexp (halfn x,
 __local intn *exp)
halfn frexp (halfn x,
 __private intn *exp)
half frexp (half x,
 __global int *exp)
half frexp (half x,
 __local int *exp)
half frexp (half x,
 __private int *exp)

Extract mantissa and exponent from x. For each
component the mantissa returned is a float with
magnitude in the interval [1/2, 1) or 0. Each
component of x equals mantissa returned * 2exp.

gentype hypot (gentype x, gentype y) Compute the value of the square root of x2+ y2
without undue overflow or underflow.

intn ilogb (halfn x)
int ilogb (half x)

Return the exponent as an integer value.

halfn ldexp (halfn x, intn k)
halfn ldexp (halfn x, int k)

Multiply x by 2 to the power k.

Last Revision Date: 11/13/11 Page 17

half ldexp (half x, int k)
gentype lgamma (gentype x)
halfn lgamma_r (halfn x,
 __global intn *signp)
halfn lgamma_r (halfn x,
 __local intn *signp)
halfn lgamma_r (halfn x,
 __private intn *signp)
half lgamma_r (half x,
 __global int *signp)
half lgamma_r (half x,
 __local int *signp)
half lgamma_r (half x,
 __private int *signp)

Log gamma function. Returns the natural
logarithm of the absolute value of the gamma
function. The sign of the gamma function is
returned in the signp argument of lgamma_r.

gentype log (gentype) Compute natural logarithm.
gentype log2 (gentype) Compute a base 2 logarithm.
gentype log10 (gentype) Compute a base 10 logarithm.
gentype log1p (gentype x) Compute loge(1.0 + x) .
gentype logb (gentype x) Compute the exponent of x, which is the integral

part of logr | x |.
gentype mad (gentype a,
 gentype b, gentype c)

mad approximates a * b + c. Whether or how the
product of a * b is rounded and how supernormal or
subnormal intermediate products are handled is not
defined. mad is intended to be used where speed is
preferred over accuracy3.

gentype maxmag (gentype x, gentype y)

Returns x if | x | > | y |, y if | y | > | x |, otherwise
fmax(x, y).

gentype minmag (gentype x, gentype y)

Returns x if | x | < | y |, y if | y | < | x |, otherwise
fmin(x, y).

gentype modf (gentype x,
 __global gentype *iptr)
gentype modf (gentype x,
 __local gentype *iptr)
gentype modf (gentype x,
 __private gentype *iptr)

Decompose a floating-point number. The modf
function breaks the argument x into integral and
fractional parts, each of which has the same sign as
the argument. It stores the integral part in the object
pointed to by iptr.

halfn nan (ushortn nancode)
half nan (ushort nancode)

Returns a quiet NaN. The nancode may be placed
in the significand of the resulting NaN.

gentype nextafter (gentype x,
 gentype y)

Computes the next representable half-precision
floating-point value following x in the direction of
y. Thus, if y is less than x, nextafter() returns the
largest representable floating-point number less

3 The user is cautioned that for some usages, e.g. mad(a, b, -a*b), the definition of mad() is loose enough that
almost any result is allowed from mad() for some values of a and b.

Last Revision Date: 11/13/11 Page 18

than x.
gentype pow (gentype x, gentype y) Compute x to the power y.
halfn pown (halfn x, intn y)
half pown (half x, int y)

Compute x to the power y, where y is an integer.

gentype powr (gentype x, gentype y) Compute x to the power y, where x is >= 0.
gentype remainder (gentype x,
 gentype y)

Compute the value r such that r = x - n*y, where n
is the integer nearest the exact value of x/y. If there
are two integers closest to x/y, n shall be the even
one. If r is zero, it is given the same sign as x.

halfn remquo (halfn x,
 halfn y,
 __global intn *quo)
halfn remquo (halfn x,
 halfn y,
 __local intn *quo)
halfn remquo (halfn x,
 halfn y,
 __private intn *quo)
half remquo (half x,
 half y,
 __global int *quo)
half remquo (half x,
 half y,
 __local int *quo)
half remquo (half x,
 half y,
 __private int *quo)

The remquo function computes the value r such
that r = x - k*y, where k is the integer nearest the
exact value of x/y. If there are two integers closest
to x/y, k shall be the even one. If r is zero, it is
given the same sign as x. This is the same value
that is returned by the remainder function.
remquo also calculates the lower seven bits of the
integral quotient x/y, and gives that value the same
sign as x/y. It stores this signed value in the object
pointed to by quo.

gentype rint (gentype) Round to integral value (using round to nearest
even rounding mode) in floating-point format.
Refer to section 7.1 for description of rounding
modes.

halfn rootn (halfn x, intn y)
half rootn (half x, int y)

Compute x to the power 1/y.

gentype round (gentype x) Return the integral value nearest to x rounding
halfway cases away from zero, regardless of the
current rounding direction.

gentype rsqrt (gentype) Compute inverse square root.
gentype sin (gentype) Compute sine.
gentype sincos (gentype x,
 __global gentype *cosval)
gentype sincos (gentype x,
 __local gentype *cosval)
gentype sincos (gentype x,
 __private gentype *cosval)

Compute sine and cosine of x. The computed sine
is the return value and computed cosine is returned
in cosval.

gentype sinh (gentype) Compute hyperbolic sine.
gentype sinpi (gentype x) Compute sin (π x).

Last Revision Date: 11/13/11 Page 19

gentype sqrt (gentype) Compute square root.
gentype tan (gentype) Compute tangent.
gentype tanh (gentype) Compute hyperbolic tangent.
gentype tanpi (gentype x) Compute tan (π x).
gentype tgamma (gentype) Compute the gamma function.
gentype trunc (gentype) Round to integral value using the round to zero

rounding mode.

Table 6.8 Scalar and Vector Argument Built-in Math Function Table

The FP_FAST_FMA_HALF macro indicates whether the fma() family of functions are fast
compared with direct code for half precision floating-point. If defined, the
FP_FAST_FMA_HALF macro shall indicate that the fma() function generally executes about as
fast as, or faster than, a multiply and an add of half operands

The macro names given in the following list must use the values specified. These constant
expressions are suitable for use in #if preprocessing directives.

#define HALF_DIG 3
#define HALF_MANT_DIG 11
#define HALF_MAX_10_EXP +4
#define HALF_MAX_EXP +16
#define HALF_MIN_10_EXP -4
#define HALF_MIN_EXP -13
#define HALF_RADIX 2
#define HALF_MAX 0x1.ffcp15h
#define HALF_MIN 0x1.0p-14h
#define HALF_EPSILON 0x1.0p-10h

The following table describes the built-in macro names given above in the OpenCL C
programming language and the corresponding macro names available to the application.

Macro in OpenCL Language Macro for application
HALF_DIG CL_HALF_DIG

HALF_MANT_DIG CL_HALF_MANT_DIG
HALF_MAX_10_EXP CL_HALF_MAX_10_EXP

HALF_MAX_EXP CL_HALF_MAX_EXP
HALF_MIN_10_EXP CL_HALF_MIN_10_EXP

HALF_MIN_EXP CL_HALF_MIN_EXP
HALF_RADIX CL_HALF_RADIX
HALF_MAX CL_HALF_MAX
HALF_MIN CL_HALF_MIN

HALF_EPSILSON CL_HALF_EPSILON

Last Revision Date: 11/13/11 Page 20

The following constants are also available. They are of type half and are accurate within the
precision of the half type.

Constant Description
M_E_H Value of e
M_LOG2E_H Value of log2e
M_LOG10E_H Value of log10e
M_LN2_H Value of loge2
M_LN10_H Value of loge10
M_PI_H Value of π
M_PI_2_H Value of π / 2
M_PI_4_H Value of π / 4
M_1_PI_H Value of 1 / π
M_2_PI_H Value of 2 / π
M_2_SQRTPI_H Value of 2 / √π
M_SQRT2_H Value of √2
M_SQRT1_2_H Value of 1 / √2

9.5.3 Common Functions4

The built-in common functions defined in table 6.12 (also listed below) are extended to include
appropriate versions of functions that take half, and half{2|3|4|8|16} as arguments and
return values. gentype now also includes half, half2, half3, half4, half8
and half16. These are described below.

Function Description
gentype clamp (gentype x,
 gentype minval,
 gentype maxval)

gentype clamp (gentype x,
 half minval,
 half maxval)

Returns min(max(x, minval), maxval) .

Results are undefined if minval > maxval.

gentype degrees (gentype radians) Converts radians to degrees,
i.e. (180 / π) * radians.

gentype max (gentype x, gentype y)

gentype max (gentype x, half y)

Returns y if x < y, otherwise it returns x. If x and y
are infinite or NaN, the return values are undefined.

4 The mix and smoothstep functions can be implemented using contractions such as mad or fma.

Last Revision Date: 11/13/11 Page 21

gentype min (gentype x, gentype y)

gentype min (gentype x, half y)

Returns y if y < x, otherwise it returns x. If x and y
are infinite or NaN, the return values are undefined.

gentype mix (gentype x,
 gentype y, gentype a)

gentype mix (gentype x,
 gentype y, half a)

Returns the linear blend of x & y implemented as:

x + (y – x) * a

a must be a value in the range 0.0 … 1.0. If a is not
in the range 0.0 … 1.0, the return values are
undefined.

gentype radians (gentype degrees) Converts degrees to radians, i.e. (π / 180) *
degrees.

gentype step (gentype edge, gentype x)

gentype step (half edge, gentype x)

Returns 0.0 if x < edge, otherwise it returns 1.0.

gentype smoothstep (gentype edge0,
 gentype edge1,
 gentype x)

gentype smoothstep (half edge0,
 half edge1,
 gentype x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
performs smooth Hermite interpolation between 0
and 1when edge0 < x < edge1. This is useful in
cases where you would want a threshold function
with a smooth transition.

This is equivalent to:
 gentype t;
 t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);
 return t * t * (3 – 2 * t);

Results are undefined if edge0 >= edge1.

gentype sign (gentype x) Returns 1.0 if x > 0, -0.0 if x = -0.0, +0.0 if x =
+0.0, or –1.0 if x < 0. Returns 0.0 if x is a NaN.

Table 6.12 Scalar and Vector Argument Built-in Common Function Table

9.5.4 Geometric Functions5

The built-in geometric functions defined in table 6.13 (also listed below) are extended to include
appropriate versions of functions that take half, and half{2|3|4} as arguments and return
values. gentype now also includes half, half2, half3 and half4. These are
described below.

5 The geometric functions can be implemented using contractions such as mad or fma.

Last Revision Date: 11/13/11 Page 22

Function Description
half4 cross (half4 p0, half4 p1)

half3 cross (half3 p0, half3 p1)

Returns the cross product of p0.xyz and p1.xyz. The
w component of double result will be 0.0.

half dot (gentype p0, gentype p1) Compute dot product.
half distance (gentype p0,
 gentype p1)

Returns the distance between p0 and p1. This is
calculated as length(p0 – p1).

half length (gentype p) Return the length of vector x, i.e.,
√ p.x2 + p.y 2 + …

gentype normalize (gentype p) Returns a vector in the same direction as p but with a
length of 1.

Table 6.13 Scalar and Vector Argument Built-in Geometric Function Table

9.5.5 Relational Functions

The scalar and vector relational functions described in table 6.14 are extended to include
versions that take half, half2, half3, half4, half8 and half16 as arguments.

The relational and equality operators (<, <=, >, >=, !=, ==) can be used with halfn vector types
and shall produce a vector shortn result as described in section 6.3.

The functions isequal, isnotequal, isgreater, isgreaterequal, isless, islessequal, islessgreater,
isfinite, isinf, isnan, isnormal, isordered, isunordered and signbit shall return a 0 if the
specified relation is false and a 1 if the specified relation is true for scalar argument types. These
functions shall return a 0 if the specified relation is false and a –1 (i.e. all bits set) if the specified
relation is true for vector argument types.

The relational functions isequal, isgreater, isgreaterequal, isless, islessequal, and islessgreater
always return 0 if either argument is not a number (NaN). isnotequal returns 1 if one or both
arguments are not a number (NaN) and the argument type is a scalar and returns -1 if one or both
arguments are not a number (NaN) and the argument type is a vector.

The functions described in table 6.14 are extended to include the halfn vector types.

Function Description
int isequal (half x, half y)
shortn isequal (halfn x, halfn y)

Returns the component-wise compare of x == y.

int isnotequal (half x, half y)
shortn isnotequal (halfn x, halfn y)

Returns the component-wise compare of x != y.

int isgreater (half x, half y)
shortn isgreater (halfn x, halfn y)

Returns the component-wise compare of x > y.

int isgreaterequal (half x, Returns the component-wise compare of x >= y.

Last Revision Date: 11/13/11 Page 23

 half y)
shortn isgreaterequal (halfn x,
 halfn y)
int isless (half x, half y)
shortn isless (halfn x, halfn y)

Returns the component-wise compare of x < y.

int islessequal (half x, half y)
shortn islessequal (halfn x, halfn y)

Returns the component-wise compare of x <= y.

int islessgreater (half x, half y)
shortn islessgreater (halfn x, halfn y)

Returns the component-wise compare of
(x < y) || (x > y) .

int isfinite (half)
shortn isfinite (halfn)

Test for finite value.

int isinf (half)
shortn isinf (halfn)

Test for infinity value (positive or negative) .

int isnan (half)
shortn isnan (halfn)

Test for a NaN.

int isnormal (half)
shortn isnormal (halfn)

Test for a normal value.

int isordered (half x, half y)
shortn isordered (halfn x, halfn y)

Test if arguments are ordered. isordered() takes
arguments x and y, and returns the result isequal(x,
x) && isequal(y, y).

int isunordered (half x, half y)
shortn isunordered (halfn x, halfn y)

Test if arguments are unordered. isunordered()
takes arguments x and y, returning non-zero if x or
y is a NaN, and zero otherwise.

int signbit (half)
shortn signbit (halfn)

Test for sign bit. The scalar version of the function
returns a 1 if the sign bit in the half is set else
returns 0. The vector version of the function
returns the following for each component in halfn:
-1 (i.e all bits set) if the sign bit in the half is set
else returns 0.

halfn bitselect (halfn a,
 halfn b,
 halfn c)

Each bit of the result is the corresponding bit of a
if the corresponding bit of c is 0. Otherwise it is
the corresponding bit of b.

halfn select (halfn a,
 halfn b,
 shortn c)
halfn select (halfn a,
 halfn b,
 ushortn c)

For each component,
result[i] = if MSB of c[i] is set ? b[i] : a[i].

igentype and ugentype must have the same number
of elements and bits as gentype.

 Table 6.14 Vector Relational Functions

Last Revision Date: 11/13/11 Page 24

9.5.6 Vector Data Load and Store Functions

The vector data load (vloadn) and store (vstoren) functions described in table 6.14 (also listed
below) are extended to include versions that read from or write to half scalar or vector values.
The generic type gentype is extended to include half. The generic type gentypen is
extended to include half,half2, half3, half4, half8 and half16.

Function Description
gentypen vloadn (size_t offset,
 const __global gentype *p)

gentypen vloadn (size_t offset,
 const __local gentype *p)

gentypen vloadn (size_t offset,
 const __constant gentype *p)

gentypen vloadn (size_t offset,
 const __private gentype *p)

Return sizeof (gentypen) bytes of data
read from address (p + (offset * n)). The
read address computed as (p + (offset * n))
must be 16-bit aligned.

void vstoren (gentypen data,
 size_t offset, __global gentype *p)

void vstoren (gentypen data,
 size_t offset, __local gentype *p)

void vstoren (gentypen data,
 size_t offset, __private gentype *p)

Write sizeof (gentypen) bytes given by
data to address (p + (offset * n)). The
write address computed as (p + (offset *
n)) must be 16-bit aligned.

 Table 6.15 Vector Data Load and Store Functions6

9.5.7 Async Copies from Global to Local Memory, Local to
Global Memory, and Prefetch

The OpenCL C programming language implements the following functions that provide
asynchronous copies between global and local memory and a prefetch from global memory.

The generic type gentype is extended to include half, half2, half3, half4, half8 and
half16.

6 vload3 reads x, y, z components from address (p + (offset * 3)) into a 3-component vector and vstore3 writes x, y,
z components from a 3-component vector to address (p + (offset * 3)).

Last Revision Date: 11/13/11 Page 25

Function Description
event_t async_work_group_copy (
 __local gentype *dst,
 const __global gentype *src,
 size_t num_gentypes,
 event_t event)

event_t async_work_group_copy (
 __global gentype *dst,
 const __local gentype *src,
 size_t num_gentypes,
 event_t event)

Perform an async copy of num_gentypes
gentype elements from src to dst. The
async copy is performed by all work-
items in a work-group and this built-in
function must therefore be encountered by
all work-items in a work-group executing
the kernel with the same argument values;
otherwise the results are undefined.

Returns an event object that can be used
by wait_group_events to wait for the
async copy to finish. The event argument
can also be used to associate the
async_work_group_copy with a previous
async copy allowing an event to be shared
by multiple async copies; otherwise event
should be zero.

If event argument is not zero, the event
object supplied in event argument will be
returned.

This function does not perform any
implicit synchronization of source data
such as using a barrier before performing
the copy.

event_t async_work_group_strided_copy (
 __local gentype *dst,
 const __global gentype *src,
 size_t num_gentypes,
 size_t src_stride,
 event_t event)

event_t async_work_group_strided_copy (
 __global gentype *dst,
 const __local gentype *src,
 size_t num_gentypes,
 size_t dst_stride,
 event_t event)

Perform an async gather of num_gentypes
gentype elements from src to dst. The
src_stride is the stride in elements for
each gentype element read from src. The
async gather is performed by all work-
items in a work-group and this built-in
function must therefore be encountered by
all work-items in a work-group executing
the kernel with the same argument values;
otherwise the results are undefined.

Returns an event object that can be used
by wait_group_events to wait for the
async copy to finish. The event argument
can also be used to associate the
async_work_group_strided_copy with a

Last Revision Date: 11/13/11 Page 26

previous async copy allowing an event to
be shared by multiple async copies;
otherwise event should be zero.

If event argument is not zero, the event
object supplied in event argument will be
returned.

This function does not perform any
implicit synchronization of source data
such as using a barrier before performing
the copy.

The behavior of
async_work_group_strided_copy is
undefined if src_stride or dst_stride is 0,
or if the src_stride or dst_stride values
cause the src or dst pointers to exceed the
upper bounds of the address space during
the copy.

void wait_group_events (int num_events,
 event_t *event_list)

Wait for events that identify the
async_work_group_copy operations to
complete. The event objects specified in
event_list will be released after the wait is
performed.

This function must be encountered by all
work-items in a work-group executing the
kernel with the same num_events and
event objects specified in event_list;
otherwise the results are undefined.

void prefetch (const __global gentype *p,
 size_t num_gentypes)

Prefetch num_gentypes *
sizeof(gentype) bytes into the global
cache. The prefetch instruction is applied
to a work-item in a work-group and does
not affect the functional behavior of the
kernel.

 Table 6.18 Built-in Async Copy and Prefetch functions

Last Revision Date: 11/13/11 Page 27

9.5.8 Image Read and Write Functions

The image read and write functions defined in tables 6.23, 6.24 and 6.25 are extended to support
image color values that are a half type.

Function Description
half4 read_imageh (image2d_t image,
 sampler_t sampler,
 int2 coord)

half4 read_imageh (image2d_t image,
 sampler_t sampler,
 float2 coord)

Use the coordinate (coord.x, coord.y) to do an element
lookup in the 2D image object specified by image.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats, CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

The read_imageh calls that take integer coordinates must
use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and addressing
mode set to CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description above are undefined.

half4 read_imageh (image3d_t image,
 sampler_t sampler,
 int4 coord)

half4 read_imageh (image3d_t image,
 sampler_t sampler,
 float4 coord)

Use the coordinate (coord.x, coord.y, coord.z) to do an
element lookup in the 3D image object specified by
image. coord.w is ignored.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

Last Revision Date: 11/13/11 Page 28

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imagehreturns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

The read_imageh calls that take integer coordinates must
use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and addressing
mode set to CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description are undefined.

half4 read_imageh (
 image2d_array_t image,
 sampler_t sampler,
 int4 coord)

half4 read_imageh (
 image2d_array_t image,
 sampler_t sampler,
 float4 coord)

Use coord.xy to do an element lookup in the 2D image
identified by coord.z in the 2D image array specified by
image.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

The read_imageh calls that take integer coordinates must
use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and addressing
mode set to CLK_ADDRESS_CLAMP_TO_EDGE,

Last Revision Date: 11/13/11 Page 29

CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description above are undefined.

half4 read_imageh (image1d_t image,
 sampler_t sampler,
 int coord)

half4 read_imageh (image1d_t image,
 sampler_t sampler,
 float coord)

Use coord to do an element lookup in the 1D image object
specified by image.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

The read_imageh calls that take integer coordinates must
use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and addressing
mode set to CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description above are undefined.

half4 read_imageh (
 image1d_array_t image,
 sampler_t sampler,
 int2 coord)

half4 read_imageh (
 image1d_array_t image,
 sampler_t sampler,
 float4 coord)

Use coord.x to do an element lookup in the 1D image
identified by coord.y in the 1D image array specified by
image.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

Last Revision Date: 11/13/11 Page 30

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

The read_imageh calls that take integer coordinates must
use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and addressing
mode set to CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description above are undefined.

Table 6.23 Built-in Image Read Functions

Function Description
half4 read_imageh (image2d_t image,
 int2 coord)

Use the coordinate (coord.x, coord.y) to do an element
lookup in the 2D image object specified by image.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

Last Revision Date: 11/13/11 Page 31

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description above are undefined.

half4 read_imageh (image3d_t image,
 int4 coord)

Use the coordinate (coord.x, coord.y, coord.z) to do an
element lookup in the 3D image object specified by
image. coord.w is ignored.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description are undefined.

half4 read_imageh (
 image2d_array_t image,
 int4 coord)

Use coord.xy to do an element lookup in the 2D image
identified by coord.z in the 2D image array specified by
image.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

Last Revision Date: 11/13/11 Page 32

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description above are undefined.

half4 read_imageh (image1d_t image,
 int coord)

half4 read_imageh (
 image1d_buffer_t image,
 int coord)

Use coord to do an element lookup in the 1D image or 1D
image buffer object specified by image.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

Values returned by read_imageh for image objects with
image_channel_data_type values not specified in the
description above are undefined.

half4 read_imageh (
 image1d_array_t image,
 int2 coord)

Use coord.x to do an element lookup in the 2D image
identified by coord.y in the 2D image array specified by
image.

read_imageh returns half precision floating-point values
in the range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-defined
packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imageh returns half precision floating-point values
in the range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8, or
CL_SNORM_INT16.

read_imageh returns half precision floating-point values
for image objects created with image_channel_data_type
set to CL_HALF_FLOAT.

Values returned by read_imageh for image objects with

Last Revision Date: 11/13/11 Page 33

image_channel_data_type values not specified in the
description above are undefined.

 Table 6.24 Built-in Image Sampler-less Read Functions

Function Description
void write_imageh (image2d_t image,
 int2 coord,
 half4 color)

Write color value to location specified by coord.xy in the
2D image specified by image.

Appropriate data format conversion to the specified image
format is done before writing the color value. x & y are
considered to be unnormalized coordinates and must be in
the range 0 ... width – 1, and 0 … height – 1.

write_imageh can only be used with image objects
created with image_channel_data_type set to one of the
pre-defined packed formats or set to CL_SNORM_INT8,
CL_UNORM_INT8, CL_SNORM_INT16,
CL_UNORM_INT16 or CL_HALF_FLOAT.

The behavior of write_imageh for image objects created
with image_channel_data_type values not specified in the
description above or with (x, y) coordinate values that are
not in the range (0 … width – 1, 0 … height – 1)
respectively, is undefined.

void write_imageh (
 image2d_array_t image,
 int4 coord,
 half4 color)

Write color value to location specified by coord.xy in the
2D image identified by coord.z in the 2D image array
specified by image.

Appropriate data format conversion to the specified image
format is done before writing the color value. coord.x,
coord.y and coord.z are considered to be unnormalized
coordinates and must be in the range 0 ... image width – 1,
0 … image height – 1 and 0 … image number of layers –
1.

write_imageh can only be used with image objects
created with image_channel_data_type set to one of the
pre-defined packed formats or set to CL_SNORM_INT8,
CL_UNORM_INT8, CL_SNORM_INT16,
CL_UNORM_INT16 or CL_HALF_FLOAT.

The behavior of write_imageh for image objects created
with image_channel_data_type values not specified in the

Last Revision Date: 11/13/11 Page 34

description above or with (x, y, z) coordinate values that
are not in the range (0 … image width – 1, 0 … image
height – 1, 0 … image number of layers – 1),
respectively, is undefined.

void write_imageh (image1d_t image,
 int coord,
 half4 color)

void write_imageh (
 image1d_buffer_t image,
 int coord,
 half4 color)

Write color value to location specified by coord in the 1D
image or 1D image buffer object specified by image.
Appropriate data format conversion to the specified image
format is done before writing the color value. coord is
considered to be unnormalized coordinates and must be in
the range 0 ... image width – 1.

write_imageh can only be used with image objects
created with image_channel_data_type set to one of the
pre-defined packed formats or set to CL_SNORM_INT8,
CL_UNORM_INT8, CL_SNORM_INT16,
CL_UNORM_INT16 or CL_HALF_FLOAT. Appropriate
data format conversion will be done to convert channel
data from a floating-point value to actual data format in
which the channels are stored.

The behavior of write_imageh for image objects created
with image_channel_data_type values not specified in the
description above or with coordinate values that is not in
the range (0 … image width – 1), is undefined.

void write_imageh (
 image1d_array_t image,
 int2 coord,
 half4 color)

Write color value to location specified by coord.x in the
1D image identified by coord.y in the 1D image array
specified by image. Appropriate data format conversion
to the specified image format is done before writing the
color value. coord.x and coord.y are considered to be
unnormalized coordinates and must be in the range 0 ...
image width – 1 and 0 … image number of layers – 1.

write_imageh can only be used with image objects
created with image_channel_data_type set to one of the
pre-defined packed formats or set to CL_SNORM_INT8,
CL_UNORM_INT8, CL_SNORM_INT16,
CL_UNORM_INT16 or CL_HALF_FLOAT. Appropriate
data format conversion will be done to convert channel
data from a floating-point value to actual data format in
which the channels are stored.

The behavior of write_imageh for image objects created
with image_channel_data_type values not specified in the
description above or with (x, y) coordinate values that are

Last Revision Date: 11/13/11 Page 35

not in the range (0 … image width – 1, 0 … image
number of layers – 1), respectively, is undefined.

void write_imageh (
 image3d_t image,
 int4 coord,
 half4 color)

Write color value to location specified by coord.xyz in the
3D image object specified by image.

Appropriate data format conversion to the specified image
format is done before writing the color value. coord.x,
coord.y and coord.z are considered to be unnormalized
coordinates and must be in the range 0 ... image width – 1,
0 … image height – 1 and 0 … image depth – 1.

write_imageh can only be used with image objects
created with image_channel_data_type set to one of the
pre-defined packed formats or set to CL_SNORM_INT8,
CL_UNORM_INT8, CL_SNORM_INT16,
CL_UNORM_INT16 or CL_HALF_FLOAT.

The behavior of write_imageh for image objects created
with image_channel_data_type values not specified in the
description above or with (x, y, z) coordinate values that
are not in the range (0 … image width – 1, 0 … image
height – 1, 0 … image depth – 1), respectively, is
undefined.

NOTE: This built-in function is only available in the
cl_khr_3d_image_writes extension is also supported by
the device.

 Table 6.25 Built-in Image Write Functions

9.5.9 IEEE754 Compliance

The following table entry describes the additions to table 4.3, which allows applications to query
the configuration information using clGetDeviceInfo for an OpenCL device that supports half
precision floating-point.

Op-code Return
Type

Description

CL_DEVICE_HALF_FP_CONFIG cl_device_
fp_config

Describes half precision floating-point
capability of the OpenCL device. This
is a bit-field that describes one or
more of the following values:

CL_FP_DENORM – denorms are

Last Revision Date: 11/13/11 Page 36

supported

CL_FP_INF_NAN – INF and NaNs are
supported

CL_FP_ROUND_TO_NEAREST –
round to nearest even rounding mode
supported

CL_FP_ROUND_TO_ZERO – round to
zero rounding mode supported

CL_FP_ROUND_TO_INF – round to
positive and negative infinity rounding
modes supported

CP_FP_FMA – IEEE754-2008 fused
multiply-add is supported.

CL_FP_SOFT_FLOAT – Basic
floating-point operations (such as
addition, subtraction, multiplication)
are implemented in software.

The required minimum half precision
floating-point capability as
implemented by this extension is
CL_FP_ROUND_TO_ZERO or
CL_FP_ROUND_TO_NEAREST |
CL_FP_INF_NAN.

9.5.10 Relative Error as ULPs

In this section we discuss the maximum relative error defined as ulp (units in the last place). If
CL_FP_ROUND_TO_NEAREST is supported, the default rounding mode for half-precision
floating-point operations will be round to nearest even; otherwise the default rounding mode will
be round to zero. Addition, subtraction, multiplication, fused multiply-add operations on half
types are required to be correctly rounded using the default rounding mode for half-precision
floating-point operations. Conversions to half floating point format must be correctly rounded
using the indicated convert_ operator rounding mode or the default rounding mode for half-
precision floating-point operations if no rounding mode is specified by the operator, or a C-style
cast is used. Conversions from half to integer format shall correctly round using the indicated
convert_ operator rounding mode, or towards zero if no rounding mode is specified by the
operator or a C-style cast is used. All conversions from half to floating point formats are exact.

Last Revision Date: 11/13/11 Page 37

The following table describes the minimum accuracy of half precision floating-point arithmetic
operations given as ULP values. The reference value used to compute the ULP value of an
arithmetic operation is the infinitely precise result.

Function Min Accuracy - ULP values7
x + y Correctly rounded
x – y Correctly rounded
x * y Correctly rounded

1.0 / x Correctly rounded
x / y Correctly rounded

acos <= 2 ulp

acospi <= 2 ulp
asin <= 2 ulp

asinpi <= 2 ulp
atan <= 2 ulp

atan2 <= 2 ulp
atanpi <= 2 ulp

atan2pi <= 2 ulp
acosh <= 2 ulp
asinh <= 2 ulp
atanh <= 2 ulp

cbrt <= 2 ulp
ceil Correctly rounded

copysign 0 ulp
cos <= 2 ulp

cosh <= 2 ulp
cospi <= 2 ulp

erfc <= 4 ulp
erf <= 4 ulp

exp <= 2 ulp
exp2 <= 2 ulp

exp10 <= 2 ulp
expm1 <= 2 ulp

fabs 0 ulp
fdim Correctly rounded
floor Correctly rounded
fma Correctly rounded

fmax 0 ulp
fmin 0 ulp
fmod 0 ulp
fract Correctly rounded
frexp 0 ulp

7 0 ulp is used for math functions that do not require rounding.

Last Revision Date: 11/13/11 Page 38

hypot <= 2 ulp
ilogb 0 ulp
ldexp Correctly rounded

log <= 2 ulp
log2 <= 2 ulp

log10 <= 2 ulp
log1p <= 2 ulp
logb 0 ulp
mad Any value allowed (infinite ulp)

maxmag 0 ulp
minmag 0 ulp

modf 0 ulp
nan 0 ulp

nextafter 0 ulp
pow(x, y) <= 4 ulp

pown(x, y) <= 4 ulp
powr(x, y) <= 4 ulp
remainder 0 ulp

remquo 0 ulp
rint Correctly rounded

rootn <= 4 ulp
round Correctly rounded
rsqrt <=1 ulp

sin <= 2 ulp
sincos <= 2 ulp for sine and cosine values

sinh <= 2 ulp
sinpi <= 2 ulp
sqrt Correctly rounded
tan <= 2 ulp

tanh <= 2 ulp
tanpi <= 2 ulp

tgamma <= 4 ulp
trunc Correctly rounded

NOTE: Implementations may perform floating-point operations on half scalar or vector data
types by converting the half values to single precision floating-point values and performing the
operation in single precision floating-point. In this case, the implementation will use the half
scalar or vector data type as a storage only format.

Last Revision Date: 11/13/11 Page 39

9.6 Creating CL context from a GL context or share
group

9.6.1 Overview

The OpenCL specification in section 9.7 defines how to share data with texture and buffer
objects in a parallel OpenGL implementation, but does not define how the association between
an OpenCL context and an OpenGL context or share group is established. This extension
defines optional attributes to OpenCL context creation routines which associate a GL context or
share group object with a newly created OpenCL context. If this extension is supported by an
implementation, the string cl_khr_gl_sharing will be present in the
CL_PLATFORM_EXTENSIONS or CL_DEVICE_EXTENSIONS string described in table 4.3.

An OpenGL implementation supporting buffer objects and sharing of texture and buffer object
images with OpenCL is required by this extension.

9.6.2 New Procedures and Functions

cl_int clGetGLContextInfoKHR (const cl_context_properties *properties,
 cl_gl_context_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret);

9.6.3 New Tokens

Returned by clCreateContext, clCreateContextFromType, and clGetGLContextInfoKHR
when an invalid OpenGL context or share group object handle is specified in properties:

CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR -1000

Accepted as the param_name argument of clGetGLContextInfoKHR:

 CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR 0x2006
 CL_DEVICES_FOR_GL_CONTEXT_KHR 0x2007

Accepted as an attribute name in the properties argument of clCreateContext and
clCreateContextFromType:

 CL_GL_CONTEXT_KHR 0x2008

Last Revision Date: 11/13/11 Page 40

 CL_EGL_DISPLAY_KHR 0x2009
 CL_GLX_DISPLAY_KHR 0x200A
 CL_WGL_HDC_KHR 0x200B
 CL_CGL_SHAREGROUP_KHR 0x200C

9.6.4 Additions to Chapter 4 of the OpenCL 1.2 Specification

In section 4.4, replace the description of properties under clCreateContext with:

"properties points to an attribute list, which is a array of ordered <attribute name, value> pairs
terminated with zero. If an attribute is not specified in properties, then its default value (listed in
table 4.5) is used (it is said to be specified implicitly). If properties is NULL or empty (points to
a list whose first value is zero), all attributes take on their default values.

Attributes control sharing of OpenCL memory objects with OpenGL buffer, texture, and
renderbuffer objects as described in section 9.7. Depending on the platform-specific API used to
bind OpenGL contexts to the window system, the following attributes may be set to identify an
OpenGL context:

 When the CGL binding API is supported, the attribute CL_CGL_SHAREGROUP_KHR
should be set to a CGLShareGroup handle to a CGL share group object.

 When the EGL binding API is supported, the attribute CL_GL_CONTEXT_KHR should be
set to an EGLContext handle to an OpenGL ES or OpenGL context, and the attribute
CL_EGL_DISPLAY_KHR should be set to the EGLDisplay handle of the display used to
create the OpenGL ES or OpenGL context.

 When the GLX binding API is supported, the attribute CL_GL_CONTEXT_KHR should

be set to a GLXContext handle to an OpenGL context, and the attribute
CL_GLX_DISPLAY_KHR should be set to the Display handle of the X Window System
display used to create the OpenGL context.

 When the WGL binding API is supported, the attribute CL_GL_CONTEXT_KHR should

be set to an HGLRC handle to an OpenGL context, and the attribute CL_WGL_HDC_KHR
should be set to the HDC handle of the display used to create the OpenGL context.

Memory objects created in the context so specified may be shared with the specified OpenGL or
OpenGL ES context (as well as with any other OpenGL contexts on the share list of that context,
according to the description of sharing in the GLX 1.4 and EGL 1.4 specifications, and the WGL
documentation for OpenGL implementations on Microsoft Windows), or with the explicitly
identified OpenGL share group for CGL. If no OpenGL or OpenGL ES context or share group is
specified in the attribute list, then memory objects may not be shared, and calling any of the
commands in section 9.7 will result in a CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR
error."

Last Revision Date: 11/13/11 Page 41

OpenCL / OpenGL sharing does not support the CL_CONTEXT_INTEROP_USER_SYNC
property defined in table 4.5. Specifying this property when creating a context with OpenCL /
OpenGL sharing will return an appropriate error.

Add to table 4.5:

Attribute Name Allowed Values
(Default value is in bold)

Description

CL_GL_CONTEXT_KHR 0, OpenGL context handle OpenGL context to
associated the OpenCL
context with

CL_CGL_SHAREGROUP_KHR 0, CGL share group handle CGL share group to
associate the OpenCL
context with

CL_EGL_DISPLAY_KHR EGL_NO_DISPLAY,
EGLDisplay handle

EGLDisplay an OpenGL
context was created with
respect to

CL_GLX_DISPLAY_KHR None, X handle X Display an OpenGL
context was created with
respect to

CL_WGL_HDC_KHR 0, HDC handle HDC an OpenGL context
was created with respect to

 Table 4.5: Context creation attributes

Replace the first error in the list for clCreateContext with:

"errcode_ret returns CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a context was
specified by any of the following means:

 A context was specified for an EGL-based OpenGL ES or OpenGL implementation by
setting the attributes CL_GL_CONTEXT_KHR and CL_EGL_DISPLAY_KHR.

 A context was specified for a GLX-based OpenGL implementation by setting the
attributes CL_GL_CONTEXT_KHR and CL_GLX_DISPLAY_KHR.

 A context was specified for a WGL-based OpenGL implementation by setting the

attributes CL_GL_CONTEXT_KHR and CL_WGL_HDC_KHR

and any of the following conditions hold:

 The specified display and context attributes do not identify a valid OpenGL or OpenGL
ES context.

 The specified context does not support buffer and renderbuffer objects.

Last Revision Date: 11/13/11 Page 42

 The specified context is not compatible with the OpenCL context being created (for
example, it exists in a physically distinct address space, such as another hardware device;
or it does not support sharing data with OpenCL due to implementation restrictions).

errcode_ret returns CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a share group was
specified for a CGL-based OpenGL implementation by setting the attribute
CL_CGL_SHAREGROUP_KHR, and the specified share group does not identify a valid CGL
share group object.

errcode_ret returns CL_INVALID_OPERATION if a context was specified as described above
and any of the following conditions hold:

 A context or share group object was specified for one of CGL, EGL, GLX, or WGL and
the OpenGL implementation does not support that window-system binding API.

 More than one of the attributes CL_CGL_SHAREGROUP_KHR, CL_EGL_DISPLAY_KHR,
CL_GLX_DISPLAY_KHR, and CL_WGL_HDC_KHR is set to a non-default value.

 Both of the attributes CL_CGL_SHAREGROUP_KHR and CL_GL_CONTEXT_KHR are set

to non-default values.

 Any of the devices specified in the devices argument cannot support OpenCL objects
which share the data store of an OpenGL object, as described in section 9.7.

errcode_ret returns CL_INVALID_PROPERTY if an attribute name other than those specified in
table 4.5 or if CL_CONTEXT_INTEROP_USER_SYNC is specified in properties."

Replace the description of properties under clCreateContextFromType with:

"properties points to an attribute list whose format and valid contents are identical to the
properties argument of clCreateContext."

Replace the first error in the list for clCreateContextFromType with the same two new errors
described above for clCreateContext.

9.6.5 Additions to section 9.7 of the OpenCL 1.2 Extension
Specification

Add new section 9.7.7 :

"OpenCL device(s) corresponding to an OpenGL context may be queried. Such a device may
not always exist (for example, if an OpenGL context is specified on a GPU not supporting
OpenCL command queues, but which does support shared CL/GL objects), and if it does exist,
may change over time. When such a device does exist, acquiring and releasing shared CL/GL
objects may be faster on a command queue corresponding to this device than on command

Last Revision Date: 11/13/11 Page 43

queues corresponding to other devices available to an OpenCL context. To query the currently
corresponding device, use the function

cl_int clGetGLContextInfoKHR (const cl_context_properties *properties,
 cl_gl_context_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

properties points to an attribute list whose format and valid contents are identical to the
properties argument of clCreateContext. properties must identify a single valid GL context or
GL share group object.

param_name is a constant that specifies the GL context information to query, and must be one of
the values shown in table 9.ctxprop.

param_value is a pointer to memory where the result of the query is returned as described in
table 9.ctxprop. If param_value is NULL, it is ignored.

param_value_size specifies the size in bytes of memory pointed to by param_value. This size
must be greater than or equal to the size of the return type described in table 9.ctxprop.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

param_name Return
Type

Information returned in
param_value

CL_CURRENT_DEVICE_FOR_
GL_CONTEXT_KHR

cl_device_id Return the CL device currently
associated with the specified OpenGL
context.

CL_DEVICES_FOR_
GL_CONTEXT_KHR

cl_device_id[] List of all CL devices which may be
associated with the specified OpenGL
context.

 Table 9.ctxprop: GL context information that can be queried with

 clGetGLContextInfoKHR

clGetGLContextInfoKHR returns CL_SUCCESS if the function is executed successfully. If no
device(s) exist corresponding to param_name, the call will not fail, but the value of
param_value_size_ret will be zero.

clGetGLContextInfoKHR returns CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a
context was specified by any of the following means:

 A context was specified for an EGL-based OpenGL ES or OpenGL implementation by
setting the attributes CL_GL_CONTEXT_KHR and CL_EGL_DISPLAY_KHR.

Last Revision Date: 11/13/11 Page 44

 A context was specified for a GLX-based OpenGL implementation by setting the

attributes CL_GL_CONTEXT_KHR and CL_GLX_DISPLAY_KHR.

 A context was specified for a WGL-based OpenGL implementation by setting the
attributes CL_GL_CONTEXT_KHR and CL_WGL_HDC_KHR.

and any of the following conditions hold:

 The specified display and context attributes do not identify a valid OpenGL or OpenGL
ES context.

 The specified context does not support buffer and renderbuffer objects.

 The specified context is not compatible with the OpenCL context being created (for
example, it exists in a physically distinct address space, such as another hardware device;
or it does not support sharing data with OpenCL due to implementation restrictions).

clGetGLContextInfoKHR returns CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a
share group was specified for a CGL-based OpenGL implementation by setting the attribute
CL_CGL_SHAREGROUP_KHR, and the specified share group does not identify a valid CGL
share group object.

clGetGLContextInfoKHR returns CL_INVALID_OPERATION if a context was specified as
described above and any of the following conditions hold:

 A context or share group object was specified for one of CGL, EGL, GLX, or WGL and
the OpenGL implementation does not support that window-system binding API.

 More than one of the attributes CL_CGL_SHAREGROUP_KHR, CL_EGL_DISPLAY_KHR,

CL_GLX_DISPLAY_KHR, and CL_WGL_HDC_KHR is set to a non-default value.

 Both of the attributes CL_CGL_SHAREGROUP_KHR and CL_GL_CONTEXT_KHR are set
to non-default values.

 Any of the devices specified in the <devices> argument cannot support OpenCL objects

which share the data store of an OpenGL object, as described in section 9.7.

clGetGLContextInfoKHR returns CL_INVALID_VALUE if an attribute name other than those
specified in table 4.5 is specified in properties.

Additionally, clGetGLContextInfoKHR returns CL_INVALID_VALUE if param_name is not
one of the values listed in table 9.ctxprop, or if the size in bytes specified by param_value_size is
less than the size of the return type shown in table 9.ctxprop, and param_value is not a NULL
value, CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device, or CL_OUT_OF_HOST_MEMORY if there is a failure to

Last Revision Date: 11/13/11 Page 45

allocate resources required by the OpenCL implementation on the host."

9.6.6 Issues

1. How should the OpenGL context be identified when creating an associated OpenCL context?

RESOLVED: by using a (display,context handle) attribute pair to identify an arbitrary OpenGL
or OpenGL ES context with respect to one of the window-system binding layers EGL, GLX, or
WGL, or a share group handle to identify a CGL share group. If a context is specified, it need not
be current to the thread calling clCreateContext*.

A previously suggested approach would use a single boolean attribute
CL_USE_GL_CONTEXT_KHR to allow creating a context associated with the currently bound
OpenGL context. This may still be implemented as a separate extension, and might allow more
efficient acquire/release behavior in the special case where they are being executed in the same
thread as the bound GL context used to create the CL context.

2. What should the format of an attribute list be?

After considerable discussion, we think we can live with a list of <attribute name,value> pairs
terminated by zero. The list is passed as 'cl_context_properties *properties', where
cl_context_properties is typedefed to be 'intptr_t' in cl.h.

This effectively allows encoding all scalar integer, pointer, and handle values in the host API
into the argument list and is analogous to the structure and type of EGL attribute lists. NULL
attribute lists are also allowed. Again as for EGL, any attributes not explicitly passed in the list
will take on a defined default value that does something reasonable.

Experience with EGL, GLX, and WGL has shown attribute lists to be a sufficiently flexible and
general mechanism to serve the needs of management calls such as context creation. It is not
completely general (encoding floating-point and non-scalar attribute values is not
straightforward), and other approaches were suggested such as opaque attribute lists with
getter/setter methods, or arrays of varadic structures.

3. What's the behavior of an associated OpenGL or OpenCL context when using resources
defined by the other associated context, and that context is destroyed?

RESOLVED: As described in section 9.7, OpenCL objects place a reference on the data store
underlying the corresponding GL object when they're created. The GL name corresponding to
that data store may be deleted, but the data store itself remains so long as any CL object has a
reference to it. However, destroying all GL contexts in the share group corresponding to a CL
context results in implementation-dependent behavior when using a corresponding CL object, up
to and including program termination.

4. How about sharing with D3D?

Last Revision Date: 11/13/11 Page 46

Sharing between D3D and OpenCL should use the same attribute list mechanism, though
obviously with different parameters, and be exposed as a similar parallel OpenCL extension.
There may be an interaction between that extension and this one since it's not yet clear if it will
be possible to create a CL context simultaneously sharing GL and D3D objects.

5. Under what conditions will context creation fail due to sharing?

RESOLVED: Several cross-platform failure conditions are described (GL context or CGL share
group doesn't exist, GL context doesn't support types of GL objects required by the section 9.7
interfaces, GL context implementation doesn't allow sharing), but additional failures may result
due to implementation-dependent reasons and should be added to this extension as such failures
are discovered. Sharing between OpenCL and OpenGL requires integration at the driver
internals level.

6. What command queues can clEnqueueAcquire/ReleaseGLObjects be placed on?

RESOLVED: All command queues. This restriction is enforced at context creation time. If any
device passed to context creation cannot support shared CL/GL objects, context creation will fail
with a CL_INVALID_OPERATION error.

7. How can applications determine which command queue to place an Acquire/Release on?

RESOLVED: The clGetGLContextInfoKHR returns either the CL device currently
corresponding to a specified GL context (typically the display it's running on), or a list of all the
CL devices the specified context might run on (potentially useful in multiheaded / "virtual
screen" environments). This command is not simply placed in section 9.7 because it relies on the
same property-list method of specifying a GL context introduced by this extension.

If no devices are returned, it means that the GL context exists on an older GPU not capable of
running OpenCL, but still capable of sharing objects between GL running on that GPU and CL
running elsewhere.

 8. What is the meaning of the CL_DEVICES_FOR_GL_CONTEXT_KHR query?

RESOLVED: The list of all CL devices that may ever be associated with a specific GL context.
On platforms such as MacOS X, the "virtual screen" concept allows multiple GPUs to back a
single virtual display. Similar functionality might be implemented on other windowing systems,
such as a transparent heterogenous multiheaded X server. Therefore the exact meaning of this
query is interpreted relative to the binding layer API in use.

9) Miscellaneous issues during syncing of version 12 with the OpenCL 1.0 revision 47 spec
language and the minor changes made including this extension as section 9.11 of that spec:

 Rev47 spec numbers table 9.ctxprop as "9.7" but this depends on the core spec revision.
 Rev47 spec uses 'cl_context' as the return type for clGetGLContextInfoKHR param

Last Revision Date: 11/13/11 Page 47

names, but cl_device_id / cl_device_id[] are the proper types.
 Rev47 spec omits the paragraph describing CL_SUCCESS return from

clGetGLContextInfoKHR.

Last Revision Date: 11/13/11 Page 48

9.7 Sharing Memory Objects with OpenGL / OpenGL
ES Buffer, Texture and Renderbuffer Objects

This section discusses OpenCL functions that allow applications to use OpenGL buffer, texture
and renderbuffer objects as OpenCL memory objects. This allows efficient sharing of data
between OpenCL and OpenGL. The OpenCL API may be used to execute kernels that read
and/or write memory objects that are also OpenGL objects.

An OpenCL image object may be created from an OpenGL texture or renderbuffer object. An
OpenCL buffer object may be created from an OpenGL buffer object.

OpenCL memory objects may be created from OpenGL objects if and only if the OpenCL
context has been created from an OpenGL share group object or context. OpenGL share groups
and contexts are created using platform specific APIs such as EGL, CGL, WGL, and GLX. On
MacOS X, an OpenCL context may be created from an OpenGL share group object using the
OpenCL platform extension cl_apple_gl_sharing. On other platforms including Microsoft
Windows, Linux/Unix and others, an OpenCL context may be created from an OpenGL context
using the Khronos platform extension cl_khr_gl_sharing. Refer to the platform documentation
for your OpenCL implementation, or visit the Khronos Registry at
http://www.khronos.org/registry/cl/ for more information.

Any supported OpenGL object defined within the GL share group object, or the share group
associated with the GL context from which the CL context is created, may be shared, with the
exception of the default OpenGL objects (i.e. objects named zero), which may not be shared.

9.7.1 Lifetime of Shared Objects

An OpenCL memory object created from an OpenGL object (hereinafter refered to as a “shared
CL/GL object”) remains valid as long as the corresponding GL object has not been deleted. If
the GL object is deleted through the GL API (e.g. glDeleteBuffers, glDeleteTextures, or
glDeleteRenderbuffers), subsequent use of the CL buffer or image object will result in
undefined behavior, including but not limited to possible CL errors and data corruption, but may
not result in program termination.

The CL context and corresponding command-queues are dependent on the existence of the GL
share group object, or the share group associated with the GL context from which the CL context
is created. If the GL share group object or all GL contexts in the share group are destroyed, any
use of the CL context or command-queue(s) will result in undefined behavior, which may
include program termination. Applications should destroy the CL command-queue(s) and CL
context before destroying the corresponding GL share group or contexts

Last Revision Date: 11/13/11 Page 49

9.7.2 CL Buffer Objects à GL Buffer Objects

The function

 cl_mem clCreateFromGLBuffer (cl_context context,
 cl_mem_flags flags,

 GLuint bufobj,
 cl_int *errcode_ret)

creates an OpenCL buffer object from an OpenGL buffer object.

context is a valid OpenCL context created from an OpenGL context.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

bufobj is the name of a GL buffer object. The data store of the GL buffer object must have have
been previously created by calling glBufferData, although its contents need not be initialized.
The size of the data store will be used to determine the size of the CL buffer object.

errcode_ret will return an appropriate error code as described below. If errcode_ret is NULL, no
error code is returned.

clCreateFromGLBuffer returns a valid non-zero OpenCL buffer object and errcode_ret is set
to CL_SUCCESS if the buffer object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context or was not created from a GL
context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_GL_OBJECT if bufobj is not a GL buffer object or is a GL buffer object but

does not have an existing data store or the size of the buffer is 0.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The size of the GL buffer object data store at the time clCreateFromGLBuffer is called will be
used as the size of buffer object returned by clCreateFromGLBuffer. If the state of a GL buffer
object is modified through the GL API (e.g. glBufferData) while there exists a corresponding
CL buffer object, subsequent use of the CL buffer object will result in undefined behavior.

Last Revision Date: 11/13/11 Page 50

The clRetainMemObject and clReleaseMemObject functions can be used to retain and release
the buffer object.

The CL buffer object created using clCreateFromGLBuffer can also be used to create a CL 1D
image buffer object.

9.7.3 CL Image Objects à GL Textures

The function

 cl_mem clCreateFromGLTexture (cl_context context,
 cl_mem_flags flags,

 GLenum texture_target,
 GLint miplevel,
 GLuint texture,
 cl_int *errcode_ret)

creates the following:

 an OpenCL 2D image object from an OpenGL 2D texture object or a single face of an
OpenGL cubemap texture object,

 an OpenCL 2D image array object from an OpenGL 2D texture array object,

 an OpenCL 1D image object from an OpenGL 1D texture object,

 an OpenCL 1D image buffer object from an OpenGL texture buffer object,

 an OpenCL 1D image array object from an OpenGL 1D texture array object,

 an OpenCL 3D image object from an OpenGL 3D texture object.

context is a valid OpenCL context created from an OpenGL context.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 may be used.

texture_target must be one of GL_TEXTURE_1D, GL_TEXTURE_1D_ARRAY,
GL_TEXTURE_BUFFER, GL_TEXTURE_2D, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_3D,
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or

Last Revision Date: 11/13/11 Page 51

GL_TEXTURE_RECTANGLE8. texture_target is used only to define the image type of texture.
No reference to a bound GL texture object is made or implied by this parameter.

miplevel is the mipmap level to be used9. If texture_target is GL_TEXTURE_BUFFER, miplevel
must be 0.

texture is the name of a GL 1D, 2D, 3D, 1D array, 2D array, cubemap, rectangle or buffer texture
object. The texture object must be a complete texture as per OpenGL rules on texture
completeness. The texture format and dimensions defined by OpenGL for the specified miplevel
of the texture will be used to create the OpenCL image memory object. Only GL texture objects
with an internal format that maps to appropriate image channel order and data type specified in
tables 5.5 and 5.6 may be used to create the OpenCL image memory object.

errcode_ret will return an appropriate error code as described below. If errcode_ret is NULL, no
error code is returned.

clCreateFromGLTexture returns a valid non-zero OpenCL image object and errcode_ret is set
to CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context or was not created from a GL
context.

 CL_INVALID_VALUE if values specified in flags are not valid or if value specified in

texture_target is not one of the values specified in the description of texture_target.

 CL_INVALID_MIP_LEVEL if miplevel is less than the value of levelbase (for OpenGL
implementations) or zero (for OpenGL ES implementations); or greater than the value of
q (for both OpenGL and OpenGL ES). levelbase and q are defined for the texture in
section 3.8.10 (Texture Completeness) of the OpenGL 2.1 specification and section
3.7.10 of the OpenGL ES 2.0.

 CL_INVALID_MIP_LEVEL if miplevel is greather than zero and the OpenGL

implementation does not support creating from non-zero mipmap levels.

 CL_INVALID_GL_OBJECT if texture is not a GL texture object whose type matches
texture_target, if the specified miplevel of texture is not defined, or if the width or height
of the specified miplevel is zero.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the OpenGL texture internal format

does not map to a supported OpenCL image format.

8 Requires OpenGL 3.1. Alternatively, GL_TEXTURE_RECTANGLE_ARB may be specified if the OpenGL
extension GL_ARB_texture_rectangle is supported.

9 Implementations may return CL_INVALID_OPERATION for miplevel values > 0.

Last Revision Date: 11/13/11 Page 52

 CL_INVALID_OPERATION if texture is a GL texture object created with a border width
value greater than zero.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

If the state of a GL texture object is modified through the GL API (e.g. glTexImage2D,
glTexImage3D or the values of the texture parameters GL_TEXTURE_BASE_LEVEL or
GL_TEXTURE_MAX_LEVEL are modified) while there exists a corresponding CL image object,
subsequent use of the CL image object will result in undefined behavior.

The clRetainMemObject and clReleaseMemObject functions can be used to retain and release
the image objects.

9.7.3.1 List of OpenGL and corresponding OpenCL Image Formats

Table 9.4 describes the list of GL texture internal formats and the corresponding CL image
formats. If a GL texture object with an internal format from table 9.4 is successfully created by
OpenGL, then there is guaranteed to be a mapping to one of the corresponding CL image
format(s) in that table. Texture objects created with other OpenGL internal formats may (but are
not guaranteed to) have a mapping to a CL image format; if such mappings exist, they are
guaranteed to preserve all color components, data types, and at least the number of
bits/component actually allocated by OpenGL for that format.

GL internal format CL image format
(channel order, channel data type)

GL_RGBA8 CL_RGBA, CL_UNORM_INT8 or
CL_BGRA, CL_UNORM_INT8

GL_RGBA,
GL_UNSIGNED_INT_8_8_8_8_REV

CL_RGBA, CL_UNORM_INT8

GL_BGRA,
GL_UNSIGNED_INT_8_8_8_8_REV

CL_BGRA, CL_UNORM_INT8

GL_RGBA16 CL_RGBA, CL_UNORM_INT16

GL_RGBA8I, GL_RGBA8I_EXT CL_RGBA, CL_SIGNED_INT8

GL_RGBA16I, GL_RGBA16I_EXT CL_RGBA, CL_SIGNED_INT16
GL_RGBA32I, GL_RGBA32I_EXT CL_RGBA, CL_SIGNED_INT32

GL_RGBA8UI, GL_RGBA8UI_EXT CL_RGBA, CL_UNSIGNED_INT8

GL_RGBA16UI, GL_RGBA16UI_EXT CL_RGBA, CL_UNSIGNED_INT16
GL_RGBA32UI, GL_RGBA32UI_EXT CL_RGBA, CL_UNSIGNED_INT32

Last Revision Date: 11/13/11 Page 53

GL_RGBA16F, GL_RGBA16F_ARB CL_RGBA, CL_HALF_FLOAT

GL_RGBA32F, GL_RGBA32F_ARB CL_RGBA, CL_FLOAT

 Table 9.4 Mapping of GL internal format to CL image format

9.7.4 CL Image Objects à GL Renderbuffers

The function

 cl_mem clCreateFromGLRenderbuffer (cl_context context,

 cl_mem_flags flags,
 GLuint renderbuffer,
 cl_int *errcode_ret)

creates an OpenCL 2D image object from an OpenGL renderbuffer object.

context is a valid OpenCL context created from an OpenGL context.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

renderbuffer is the name of a GL renderbuffer object. The renderbuffer storage must be
specified before the image object can be created. The renderbuffer format and dimensions
defined by OpenGL will be used to create the 2D image object. Only GL renderbuffers with
internal formats that maps to appropriate image channel order and data type specified in tables
5.5 and 5.6 can be used to create the 2D image object.

errcode_ret will return an appropriate error code as described below. If errcode_ret is NULL, no
error code is returned.

clCreateFromGLRenderbuffer returns a valid non-zero OpenCL image object and errcode_ret
is set to CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL
value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context or was not created from a GL
context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_GL_OBJECT if renderbuffer is not a GL renderbuffer object or if the width

or height of renderbuffer is zero.

Last Revision Date: 11/13/11 Page 54

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the OpenGL renderbuffer internal

format does not map to a supported OpenCL image format.

 CL_INVALID_OPERATION if renderbuffer is a multi-sample GL renderbuffer object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

If the state of a GL renderbuffer object is modified through the GL API (i.e. changes to the
dimensions or format used to represent pixels of the GL renderbuffer using appropriate GL API
calls such as glRenderbufferStorage) while there exists a corresponding CL image object,
subsequent use of the CL image object will result in undefined behavior.

The clRetainMemObject and clReleaseMemObject functions can be used to retain and release
the image objects.

Table 9.4 describes the list of GL renderbuffer internal formats and the corresponding CL image
formats. If a GL renderbuffer object with an internal format from table 9.4 is successfully
created by OpenGL, then there is guaranteed to be a mapping to one of the corresponding CL
image format(s) in that table. Renderbuffer objects created with other OpenGL internal formats
may (but are not guaranteed to) have a mapping to a CL image format; if such mappings exist,
they are guaranteed to preserve all color components, data types, and at least the number of
bits/component actually allocated by OpenGL for that format.

9.7.5 Querying GL object information from a CL memory
object

The OpenGL object used to create the OpenCL memory object and information about the object
type i.e. whether it is a texture, renderbuffer or buffer object can be queried using the following
function.

 cl_int clGetGLObjectInfo (cl_mem memobj,
 cl_gl_object_type *gl_object_type,
 GLuint *gl_object_name)

gl_object_type returns the type of GL object attached to memobj and can be
CL_GL_OBJECT_BUFFER, CL_GL_OBJECT_TEXTURE2D, CL_GL_OBJECT_TEXTURE3D,
CL_GL_OBJECT_TEXTURE2D_ARRAY, CL_GL_OBJECT_TEXTURE1D,
CL_GL_OBJECT_TEXTURE1D_ARRAY, CL_GL_OBJECT_TEXTURE_BUFFER, or
CL_GL_OBJECT_RENDERBUFFER. If gl_object_type is NULL, it is ignored

Last Revision Date: 11/13/11 Page 55

gl_object_name returns the GL object name used to create memobj. If gl_object_name is NULL,
it is ignored.

clGetGLObjectInfo returns CL_SUCCESS if the call was executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid OpenCL memory object.

 CL_INVALID_GL_OBJECT if there is no GL object associated with memobj.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clGetGLTextureInfo (cl_mem memobj,
 cl_gl_texture_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

returns additional information about the GL texture object associated with memobj.

param_name specifies what additional information about the GL texture object associated with
memobj to query. The list of supported param_name types and the information returned in
param_value by clGetGLTextureInfo is described in table 9.5 below.

param_value is a pointer to memory where the result being queried is returned. If param_value
is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 9.5 below.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_gl_texture_info Return Type Info. returned in param_value
CL_GL_TEXTURE_TARGET GLenum The texture_target argument specified in

clCreateFromGLTexture.

CL_GL_MIPMAP_LEVEL GLint The miplevel argument specified in

Last Revision Date: 11/13/11 Page 56

 clCreateFromGLTexture.

 Table 9.5 List of supported param_names by clGetGLTextureInfo

clGetGLTextureInfo returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid OpenCL memory object.

 CL_INVALID_GL_OBJECT if there is no GL texture object associated with memobj.

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 9.5 and param_value is
not NULL, or if param_value and param_value_size_ret are NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

9.7.6 Sharing memory objects that map to GL objects
between GL and CL contexts

The function

cl_int clEnqueueAcquireGLObjects (cl_command_queue command_queue,
 cl_uint num_objects.

 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

is used to acquire OpenCL memory objects that have been created from OpenGL objects. These
objects need to be acquired before they can be used by any OpenCL commands queued to a
command-queue. The OpenGL objects are acquired by the OpenCL context associated with
command_queue and can therefore be used by all command-queues associated with the OpenCL
context.

command_queue is a valid command-queue. All devices used to create the OpenCL context
associated with command_queue must support acquiring shared CL/GL objects. This constraint
is enforced at context creation time.

Last Revision Date: 11/13/11 Page 57

num_objects is the number of memory objects to be acquired in mem_objects.

mem_objects is a pointer to a list of CL memory objects that correspond to GL objects.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points.

event returns an event object that identifies this command and can be used
to query or queue a wait for the command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueAcquireGLObjects returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL the function does nothing and returns CL_SUCCESS.
Otherwise, it returns one of the following errors:

 CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if
num_objects > 0 and mem_objects is NULL.

 CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL

memory objects.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue was not created
from an OpenGL context

 CL_INVALID_GL_OBJECT if memory objects in mem_objects have not been created

from a GL object(s).

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/13/11 Page 58

The function

cl_int clEnqueueReleaseGLObjects (cl_command_queue command_queue,
 cl_uint num_objects.

 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

is used to release OpenCL memory objects that have been created from OpenGL objects. These
objects need to be released before they can be used by OpenGL. The OpenGL objects are
released by the OpenCL context associated with command_queue.

num_objects is the number of memory objects to be released in mem_objects.

mem_objects is a pointer to a list of CL memory objects that correpond to GL objects.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points.

event returns an event object that identifies this particular read / write command and can be used
to query or queue a wait for the command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueReleaseGLObjects returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL the function does nothing and returns CL_SUCCESS.
Otherwise, it returns one of the following errors:

 CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if
num_objects > 0 and mem_objects is NULL.

 CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL

memory objects.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue was not created
from an OpenGL context

Last Revision Date: 11/13/11 Page 59

 CL_INVALID_GL_OBJECT if memory objects in mem_objects have not been created
from a GL object(s).

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

9.7.6.1 Synchronizing OpenCL and OpenGL Access to Shared Objects

In order to ensure data integrity, the application is responsible for synchronizing access to shared
CL/GL objects by their respective APIs. Failure to provide such synchronization may result in
race conditions and other undefined behavior including non-portability between
implementations.

Prior to calling clEnqueueAcquireGLObjects, the application must ensure that any pending GL
operations which access the objects specified in mem_objects have completed. This may be
accomplished portably by issuing and waiting for completion of a glFinish command on all GL
contexts with pending references to these objects. Implementations may offer more efficient
synchronization methods; for example on some platforms calling glFlush may be sufficient, or
synchronization may be implicit within a thread, or there may be vendor-specific extensions that
enable placing a fence in the GL command stream and waiting for completion of that fence in the
CL command queue. Note that no synchronization methods other than glFinish are portable
between OpenGL implementations at this time.

Similarly, after calling clEnqueueReleaseGLObjects, the application is responsible for ensuring
that any pending OpenCL operations which access the objects specified in mem_objects have
completed prior to executing subsequent GL commands which reference these objects. This
may be accomplished portably by calling clWaitForEvents with the event object returned by
clEnqueueReleaseGLObjects, or by calling clFinish. As above, some implementations may
offer more efficient methods.

The application is responsible for maintaining the proper order of operations if the CL and GL
contexts are in separate threads.

If a GL context is bound to a thread other than the one in which clEnqueueReleaseGLObjects
is called, changes to any of the objects in mem_objects may not be visible to that context without
additional steps being taken by the application. For an OpenGL 3.1 (or later) context, the
requirements are described in Appendix D ("Shared Objects and Multiple Contexts") of the

Last Revision Date: 11/13/11 Page 60

OpenGL 3.1 Specification. For prior versions of OpenGL, the requirements are implementation-
dependent.

Attempting to access the data store of an OpenGL object after it has been acquired by OpenCL
and before it has been released will result in undefined behavior. Similarly, attempting to access
a shared CL/GL object from OpenCL before it has been acquired by the OpenCL command
queue, or after it has been released, will result in undefined behavior.

Last Revision Date: 11/13/11 Page 61

9.8 Creating CL event objects from GL sync objects

9.8.1 Overview

This extension allows creating OpenCL event objects linked to OpenGL fence sync objects,
potentially improving efficiency of sharing images and buffers between the two APIs. The
companion GL_ARB_cl_event extension provides the complementary functionality of creating
an OpenGL sync object from an OpenCL event object.

In addition, this extension modifies the behavior of clEnqueueAcquireGLObjects and
clEnqueueReleaseGLObjects to implicitly guarantee synchronization with an OpenGL context
bound in the same thread as the OpenCL context.

If this extension is supported by an implementation, the string cl_khr_gl_event will be present
in the CL_PLATFORM_EXTENSIONS or CL_DEVICE_EXTENSIONS string described in table
4.3.

9.8.2 New Procedures and Functions

cl_event clCreateEventFromGLsyncKHR (cl_context context,
 GLsync sync,
 cl_int *errcode_ret);

9.8.3 New Tokens

Returned by clGetEventInfo when param_name is CL_EVENT_COMMAND_TYPE:

CL_COMMAND_GL_FENCE_SYNC_OBJECT_KHR 0x200D

9.8.4 Additions to Chapter 5 of the OpenCL 1.2 Specification

Add following to the fourth paragraph of section 5.9 (prior to the description of
clWaitForEvents):

"Event objects can also be used to reflect the status of an OpenGL sync object. The sync object
in turn refers to a fence command executing in an OpenGL command stream. This provides
another method of coordinating sharing of buffers and images between OpenGL and OpenCL
(see section 9.7.6.1)."

Last Revision Date: 11/13/11 Page 62

Add CL_COMMAND_GL_FENCE_SYNC_OBJECT_KHR to the valid param_value values
returned by clGetEventInfo for param_name CL_EVENT_COMMAND_TYPE (in the second row
and third column of table 5.18).

Add new subsection 5.9.1:

"5.9.1 Linking Event Objects to OpenGL Synchronization Objects

An event object may be created by linking to an OpenGL sync object. Completion of such an
event object is equivalent to waiting for completion of the fence command associated with the
linked GL sync object.

The function

cl_event clCreateEventFromGLsyncKHR (cl_context context,
 GLsync sync,
 cl_int *errcode_ret)

creates a linked event object.

context is a valid OpenCL context created from an OpenGL context or share group, using the
cl_khr_gl_sharing extension.

sync is the name of a sync object in the GL share group associated with context.

clCreateEventFromGLsyncKHR returns a valid OpenCL event object and errcode_ret is set to
CL_SUCCESS if the event object is created successfully. Otherwise, it returns a NULL value with
one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context, or was not created from a GL
context.

 CL_INVALID_GL_OBJECT if sync is not the name of a sync object in the GL share group

associated with context.

The parameters of an event object linked to a GL sync object will return the following values
when queried with clGetEventInfo:

 The CL_EVENT_COMMAND_QUEUE of a linked event is NULL, because the event is not
associated with any OpenCL command queue.

 The CL_EVENT_COMMAND_TYPE of a linked event is

CL_COMMAND_GL_FENCE_SYNC_OBJECT_KHR, indicating that the event is
associated with a GL sync object, rather than an OpenCL command.

 The CL_EVENT_COMMAND_EXECUTION_STATUS of a linked event is either

Last Revision Date: 11/13/11 Page 63

CL_SUBMITTED, indicating that the fence command associated with the sync object has
not yet completed, or CL_COMPLETE, indicating that the fence command has completed.

clCreateEventFromGLsyncKHR performs an implicit clRetainEvent on the returned event
object. Creating a linked event object also places a reference on the linked GL sync object.
When the event object is deleted, the reference will be removed from the GL sync object.

Events returned from clCreateEventFromGLsyncKHR may only be consumed by
clEnqueueAcquireGLObjects. Passing such events to any other CL API will generate a
CL_INVALID_EVENT error."

9.8.5 Additions to Chapter 9 of the OpenCL 1.2 Specification

Add following the paragraph describing parameter event to clEnqueueAcquireGLObjects:

"If an OpenGL context is bound to the current thread, then any OpenGL commands which

1. affect or access the contents of a memory object listed in the mem_objects list, and
2. were issued on that OpenGL context prior to the call to clEnqueueAcquireGLObjects

will complete before execution of any OpenCL commands following the
clEnqueueAcquireGLObjects which affect or access any of those memory objects. If a non-
NULL event object is returned, it will report completion only after completion of such OpenGL
commands."

Add following the paragraph describing parameter event to clEnqueueReleaseGLObjects:

"If an OpenGL context is bound to the current thread, then then any OpenGL commands which

1. affect or access the contents of the memory objects listed in the mem_objects list, and
2. are issued on that context after the call to clEnqueueReleaseGLObjects

will not execute until after execution of any OpenCL commands preceding the
clEnqueueReleaseGLObjects which affect or access any of those memory objects. If a non-
NULL event object is returned, it will report completion before execution of such OpenGL
commands."

Replace the second paragraph of section 9.7.6.1 (Synchronizing OpenCL and OpenGL Access to
Shared Objects) with:

"Prior to calling clEnqueueAcquireGLObjects, the application must ensure that any pending
OpenGL operations which access the objects specified in mem_objects have completed.

If the cl_khr_gl_event extension is supported, then the OpenCL implementation will ensure that
any such pending OpenGL operations are complete for an OpenGL context bound to the same

Last Revision Date: 11/13/11 Page 64

thread as the OpenCL context. This is referred to as implicit synchronization.

If the cl_khr_gl_event extension is supported and the OpenGL context in question supports
fence sync objects, completion of OpenGL commands may also be determined by placing a GL
fence command after those commands using glFenceSync, creating an event from the resulting
GL sync object using clCreateEventFromGLsyncKHR, and determining completion of that
event object via clEnqueueAcquireGLObjects. This method may be considerably more
efficient than calling glFinish, and is referred to as explicit synchronization. Explicit
synchronization is most useful when an OpenGL context bound to another thread is accessing the
memory objects.

If the cl_khr_gl_event extension is not supported, completion of OpenGL commands may be
determined by issuing and waiting for completion of a glFinish command on all OpenGL
contexts with pending references to these objects. Some implementations may offer other
efficient synchronization methods. If such methods exist they will be described in platform-
specific documentation.

Note that no synchronization method other than glFinish is portable between all OpenGL
implementations and all OpenCL implementations. While this is the only way to ensure
completion that is portable to all platforms, glFinish is an expensive operation and its use should
be avoided if the cl_khr_gl_event extension is supported on a platform."

9.8.6 Issues

1) How are references between CL events and GL syncs handled?

PROPOSED: The linked CL event places a single reference on the GL sync object. That
reference is removed when the CL event is deleted. A more expensive alternative would be to
reflect changes in the CL event reference count through to the GL sync.

2) How are linkages to synchronization primitives in other APIs handled?

UNRESOLVED. We will at least want to have a way to link events to EGL sync objects. There
is probably no analogous DX concept. There would be an entry point for each type of
synchronization primitive to be linked to, such as clCreateEventFromEGLSyncKHR.

An alternative is a generic clCreateEventFromExternalEvent taking an attribute list. The attribute
list would include information defining the type of the external primitive and additional
information (GL sync object handle, EGL display and sync object handle, etc.) specific to that
type. This allows a single entry point to be reused.

These will probably be separate extensions following the API proposed here.

3) Should the CL_EVENT_COMMAND_TYPE correspond to the type of command (fence) or
the type of the linked sync object?

Last Revision Date: 11/13/11 Page 65

PROPOSED: To the type of the linked sync object.

4) Should we support both explicit and implicit synchronization?

PROPOSED: Yes. Implicit synchronization is suitable when GL and CL are executing in the
same application thread. Explicit synchronization is suitable when they are executing in different
threads but the expense of glFinish is too high.

5) Should this be a platform or device extension?

PROPOSED: Platform extension. This may result in considerable under-the-hood work to
implement the sync->event semantics using only the public GL API, however, when multiple
drivers and devices with different GL support levels coexist in the same runtime.

6) Where can events generated from GL syncs be usable?

PROPOSED: Only with clEnqueueAcquireGLObjects, and attempting to use such an event
elsewhere will generate an error. There is no apparent use case for using such events elsewhere,
and possibly some cost to supporting it, balanced by the cost of checking the source of events in
all other commands accepting them as parameters.

Last Revision Date: 11/13/11 Page 66

9.9 Sharing Memory Objects with Direct3D 10

9.9.1 Overview

The goal of this extension is to provide interoperability between OpenCL and Direct3D 10. This
is designed to function analogously to the OpenGL interoperability as defined in sections 9.7 and
9.8. If this extension is supported by an implementation, the string cl_khr_d3d10_sharing will
be present in the CL_PLATFORM_EXTENSIONS or CL_DEVICE_EXTENSIONS string described
in table 4.3.

9.9.2 Header File

As currently proposed the interfaces for this extension would be provided in cl_d3d10.h.

9.9.3 New Procedures and Functions

cl_int clGetDeviceIDsFromD3D10KHR (cl_platform_id platform,
 cl_d3d10_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d10_device_set_khr d3d_device_set,
cl_uint num_entries,
cl_device_id *devices,
cl_uint *num_devices)

cl_mem clCreateFromD3D10BufferKHR (cl_context context,

 cl_mem_flags flags,
 ID3D10Buffer *resource,
 cl_int *errcode_ret)

cl_mem clCreateFromD3D10Texture2DKHR (cl_context context,

 cl_mem_flags flags,
 ID3D10Texture2D *resource,
 UINT subresource,
 cl_int *errcode_ret)

cl_mem clCreateFromD3D10Texture3DKHR (cl_context context,

 cl_mem_flags flags,
 ID3D10Texture3D *resource,
 UINT subresource,
 cl_int *errcode_ret)

Last Revision Date: 11/13/11 Page 67

 cl_int clEnqueueAcquireD3D10ObjectsKHR (cl_command_queue command_queue,

 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

 cl_int clEnqueueReleaseD3D10ObjectsKHR (cl_command_queue command_queue,

 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

9.9.4 New Tokens

Accepted as a Direct3D 10 device source in the d3d_device_source parameter of
clGetDeviceIDsFromD3D10KHR:

CL_D3D10_DEVICE_KHR 0x4010
CL_D3D10_DXGI_ADAPTER_KHR 0x4011

Accepted as a set of Direct3D 10 devices in the d3d_device_set parameter of
clGetDeviceIDsFromD3D10KHR:

CL_PREFERRED_DEVICES_FOR_D3D10_KHR 0x4012
CL_ALL_DEVICES_FOR_D3D10_KHR 0x4013

Accepted as a property name in the properties parameter of clCreateContext and
clCreateContextFromType:

CL_CONTEXT_D3D10_DEVICE_KHR 0x4014

Accepted as a property name in the param_name parameter of clGetContextInfo:

CL_CONTEXT_D3D10_PREFER_SHARED_RESOURCES_KHR 0x402C

Accepted as the property being queried in the param_name parameter of clGetMemObjectInfo:

CL_MEM_D3D10_RESOURCE_KHR 0x4015

Accepted as the property being queried in the param_name parameter of clGetImageInfo:

Last Revision Date: 11/13/11 Page 68

 CL_IMAGE_D3D10_SUBRESOURCE_KHR 0x4016

Returned in the param_value parameter of clGetEventInfo when param_name is
CL_EVENT_COMMAND_TYPE:

CL_COMMAND_ACQUIRE_D3D10_OBJECTS_KHR 0x4017
CL_COMMAND_RELEASE_D3D10_OBJECTS_KHR 0x4018

Returned by clCreateContext and clCreateContextFromType if the Direct3D 10 device
specified for interoperability is not compatible with the devices against which the context is to be
created:

CL_INVALID_D3D10_DEVICE_KHR -1002

Returned by clCreateFromD3D10BufferKHR when resource is not a Direct3D 10 buffer
object, and by clCreateFromD3D10Texture2DKHR and
clCreateFromD3D10Texture3DKHR when resource is not a Direct3D 10 texture object.

CL_INVALID_D3D10_RESOURCE_KHR -1003

Returned by clEnqueueAcquireD3D10ObjectsKHR when any of mem_objects are currently
acquired by OpenCL

CL_D3D10_RESOURCE_ALREADY_ACQUIRED_KHR -1004

Returned by clEnqueueReleaseD3D10ObjectsKHR when any of mem_objects are not currently
acquired by OpenCL

CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR -1005

9.9.5 Additions to Chapter 4 of the OpenCL 1.2 Specification

In section 4.4, replace the description of properties under clCreateContext with:

"properties specifies a list of context property names and their corresponding values. Each
property is followed immediately by the corresponding desired value. The list is terminated with
zero. If a property is not specified in properties, then its default value (listed in table 4.5) is used
(it is said to be specified implicitly). If properties is NULL or empty (points to a list whose first
value is zero), all attributes take on their default values."

Add the following to table 4.5:

cl_context_properties enum Property value Description
CL_CONTEXT_D3D10_DEVICE_KHR ID3D10Device * Specifies the ID3D10Device *

Last Revision Date: 11/13/11 Page 69

to use for Direct3D 10
interoperability.

The default value is NULL.

Add to the list of errors for clCreateContext:

 CL_INVALID_D3D10_DEVICE_KHR if the value of the property
CL_CONTEXT_D3D10_DEVICE_KHR is non-NULL and does not specify a valid
Direct3D 10 device with which the cl_device_ids against which this context is to be
created may interoperate.

 CL_INVALID_OPERATION if Direct3D 10 interoperability is specified by setting

CL_INVALID_D3D10_DEVICE_KHR to a non-NULL value, and interoperability with
another graphics API is also specified."

Add to the list of errors for clCreateContextFromType the same new errors described above for
clCreateContext.

Add the following row to table 4.7:

cl_context_info Return Type Information returned in

param_value
CL_CONTEXT_D3D10_PREFER
_SHARED_RESOURCES_KHR

cl_bool Returns CL_TRUE if Direct3D 10
resources created as shared by setting
MiscFlags to include
D3D10_RESOURCE_MISC_SHARED
will perform faster when shared with
OpenCL, compared with resources
which have not set this flag. Otherwise
returns CL_FALSE.

9.9.6 Additions to Chapter 5 of the OpenCL 1.2 Specification

Add to the list of errors for clGetMemObjectInfo:

 CL_INVALID_D3D10_RESOURCE_KHR if param_name is
CL_MEM_D3D10_RESOURCE_KHR and memobj was not created by the function
clCreateFromD3D10BufferKHR, clCreateFromD3D10Texture2DKHR, or
clCreateFromD3D10Texture3DKHR."

Extend table 5.11 to include the following entry.

Last Revision Date: 11/13/11 Page 70

cl_mem_info Return type Info. returned in param_value
CL_MEM_D3D10_
RESOURCE_KHR

ID3D10Resource * If memobj was created using
clCreateFromD3D10BufferKHR,
clCreateFromD3D10Texture2DKHR, or
clCreateFromD3D10Texture3DKHR,
returns the resource argument specified
when memobj was created.

Add to the list of errors for clGetImageInfo:

 CL_INVALID_D3D10_RESOURCE_KHR if param_name is
CL_MEM_D3D10_SUBRESOURCE_KHR and image was not created by the function
clCreateFromD3D10Texture2DKHR, or clCreateFromD3D10Texture3DKHR."

Extend table 5.9 to include the following entry.

cl_image_info Return type Info. returned in param_value
CL_MEM_D3D10_
SUBRESOURCE_KHR

ID3D10Resource * If image was created using
clCreateFromD3D10Texture2DKHR, or
clCreateFromD3D10Texture3DKHR,
returns the subresource argument specified
when image was created.

Add to table 5.18 in the Info returned in <param_value> column for cl_event_info =
CL_EVENT_COMMAND_TYPE:

CL_COMMAND_ACQUIRE_D3D10_OBJECTS_KHR
CL_COMMAND_RELEASE_D3D10_OBJECTS_KHR

9.9.7 Sharing Memory Objects with Direct3D 10 Resources

This section discusses OpenCL functions that allow applications to use Direct3D 10 resources as
OpenCL memory objects. This allows efficient sharing of data between OpenCL and Direct3D
10. The OpenCL API may be used to execute kernels that read and/or write memory objects that
are also Direct3D 10 resources. An OpenCL image object may be created from a Direct3D 10
texture resource. An OpenCL buffer object may be created from a Direct3D 10 buffer resource.
OpenCL memory objects may be created from Direct3D 10 objects if and only if the OpenCL
context has been created from a Direct3D 10 device.

Last Revision Date: 11/13/11 Page 71

9.9.7.1 Querying OpenCL Devices Corresponding to Direct3D 10 Devices

The OpenCL devices corresponding to a Direct3D 10 device may be queried. The OpenCL
devices corresponding to a DXGI adapter may also be queried. The OpenCL devices
corresponding to a Direct3D 10 device will be a subset of the OpenCL devices corresponding to
the DXGI adapter against which the Direct3D 10 device was created.

The OpenCL devices corresponding to a Direct3D 10 device or a DXGI device may be queried
using the function

cl_int clGetDeviceIDsFromD3D10KHR (cl_platform_id platform,
cl_d3d10_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d10_device_set_khr d3d_device_set,
cl_uint num_entries,
cl_device_id *devices,
cl_uint *num_devices)

platform refers to the platform ID returned by clGetPlatformIDs.

d3d_device_source specifies the type of d3d_object, and must be one of the values shown in
table 9.9.1.

d3d_object specifies the object whose corresponding OpenCL devices are being queried. The
type of d3d_object must be as specified in table 9.9.1.

d3d_device_set specifies the set of devices to return, and must be one of the values shown in
table 9.9.2.

num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL then num_entries must be greater than zero.

devices returns a list of OpenCL devices found. The cl_device_id values returned in devices can
be used to identify a specific OpenCL device. If devices is NULL, this argument is ignored. The
number of OpenCL devices returned is the minimum of the value specified by num_entries and
the number of OpenCL devices corresponding to d3d_object.

num_devices returns the number of OpenCL devices available that correspond to d3d_object. If
num_devices is NULL, this argument is ignored.

clGetDeviceIDsFromD3D10KHR returns CL_SUCCESS if the function is executed
successfully. Otherwise it may return

 CL_INVALID_PLATFORM if platform is not a valid platform.

 CL_INVALID_VALUE if d3d_device_source is not a valid value, d3d_device_set is not a

Last Revision Date: 11/13/11 Page 72

valid value, num_entries is equal to zero and devices is not NULL, or if both
num_devices and devices are NULL.

 CL_DEVICE_NOT_FOUND if no OpenCL devices that correspond to d3d_object were

found.

cl_d3d_device_source_khr Type of d3d_object
CL_D3D10_DEVICE_KHR ID3D10Device *

CL_D3D10_DXGI_ADAPTER_KHR IDXGIAdapter *

 Table 9.9.1 Types used to specify the object whose corresponding OpenCL devices are
 being queried by clGetDeviceIDsFromD3D10KHR

cl_d3d_device_set_khr Devices returned in devices
CL_PREFERRED_DEVICES_FOR_D3D10_KHR The OpenCL devices associated

with the specified Direct3D
object.

CL_ALL_DEVICES_FOR_D3D10_KHR All OpenCL devices which may
interoperate with the specified
Direct3D object. Performance of
sharing data on these devices may
be considerably less than on the
preferred devices.

 Table 9.9.2 Sets of devices queriable using clGetDeviceIDsFromD3D10KHR

9.9.7.2 Lifetime of Shared Objects

An OpenCL memory object created from a Direct3D 10 resource remains valid as long as the
corresponding Direct3D 10 resource has not been deleted. If the Direct3D 10 resource is deleted
through the Direct3D 10 API, subsequent use of the OpenCL memory object will result in
undefined behavior, including but not limited to possible OpenCL errors, data corruption, and
program termination.

The successful creation of a cl_context against a Direct3D 10 device specified via the context
create parameter CL_CONTEXT_D3D10_DEVICE_KHR will increment the internal Direct3D
reference count on the specified Direct3D 10 device. The internal Direct3D reference count on
that Direct3D 10 device will be decremented when the OpenCL reference count on the returned
OpenCL context drops to zero.

The OpenCL context and corresponding command-queues are dependent on the existence of the
Direct3D 10 device from which the OpenCL context was created. If the Direct3D 10 device is
deleted through the Direct3D 10 API, subsequent use of the OpenCL context will result in

Last Revision Date: 11/13/11 Page 73

undefined behavior, including but not limited to possible OpenCL errors, data corruption, and
program termination.

9.9.7.3 Sharing Direct3D 10 Buffer Resources as OpenCL Buffer Objects

The function

cl_mem clCreateFromD3D10BufferKHR (cl_context context,
 cl_mem_flags flags,
 ID3D10Buffer *resource,
 cl_int *errcode_ret)

creates an OpenCL buffer object from a Direct3D 10 buffer.

context is a valid OpenCL context created from a Direct3D 10 device.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

resource is a pointer to the Direct3D 10 buffer to share.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateFromD3D10BufferKHR returns a valid non-zero OpenCL buffer object and
errcode_ret is set to CL_SUCCESS if the buffer object is created successfully. Otherwise, it
returns a NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_D3D10_RESOURCE_KHR if resource is not a Direct3D 10 buffer resource,
if resource was created with the D3D10_USAGE flag D3D10_USAGE_IMMUTABLE, if a
cl_mem from resource has already been created using
clCreateFromD3D10BufferKHR, or if context was not created against the same
Direct3D 10 device from which resource was created.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The size of the returned OpenCL buffer object is the same as the size of resource. This call will
increment the internal Direct3D reference count on resource. The internal Direct3D reference
count on resource will be decremented when the OpenCL reference count on the returned

Last Revision Date: 11/13/11 Page 74

OpenCL memory object drops to zero.

9.9.7.4 Sharing Direct3D 10 Texture and Resources as OpenCL Image
Objects

The function

cl_mem clCreateFromD3D10Texture2DKHR (cl_context context,
 cl_mem_flags flags,
 ID3D10Texture2D *resource,
 UINT subresource,
 cl_int *errcode_ret)

creates an OpenCL 2D image object from a subresource of a Direct3D 10 2D texture.

context is a valid OpenCL context created from a Direct3D 10 device.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

resource is a pointer to the Direct3D 10 2D texture to share.

subresource is the subresource of resource to share.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateFromD3D10Texture2DKHR returns a valid non-zero OpenCL image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, it
returns a NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid or if subresource is not a
valid subresource index for resource.

 CL_INVALID_D3D10_RESOURCE_KHR if resource is not a Direct3D 10 texture

resource, if resource was created with the D3D10_USAGE flag
D3D10_USAGE_IMMUTABLE, if resource is a multisampled texture, if a cl_mem from
subresource subresource of resource has already been created using
clCreateFromD3D10Texture2DKHR, or if context was not created against the same
Direct3D 10 device from which resource was created.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the Direct3D 10 texture format of

Last Revision Date: 11/13/11 Page 75

resource is not listed in table 9.9.3 or if the Direct3D 10 texture format of resource does
not map to a supported OpenCL image format.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The width and height of the returned OpenCL 2D image object are determined by the width and
height of subresource subresource of resource. The channel type and order of the returned
OpenCL 2D image object is determined by the format of resource by table 9.9.3.

This call will increment the internal Direct3D reference count on resource. The internal
Direct3D reference count on resource will be decremented when the OpenCL reference count on
the returned OpenCL memory object drops to zero.

The function

cl_mem clCreateFromD3D10Texture3DKHR (cl_context context,
 cl_mem_flags flags,
 ID3D10Texture3D *resource,
 UINT subresource,
 cl_int *errcode_ret)

creates an OpenCL 3D image object from a subresource of a Direct3D 10 3D texture.

context is a valid OpenCL context created from a Direct3D 10 device.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

resource is a pointer to the Direct3D 10 3D texture to share.

subresource is the subresource of resource to share.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateFromD3D10Texture3DKHR returns a valid non-zero OpenCL image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, it
returns a NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid or if subresource is not a
valid subresource index for resource.

Last Revision Date: 11/13/11 Page 76

 CL_INVALID_D3D10_RESOURCE_KHR if resource is not a Direct3D 10 texture

resource, if resource was created with the D3D10_USAGE flag
D3D10_USAGE_IMMUTABLE, if resource is a multisampled texture, if a cl_mem from
subresource subresource of resource has already been created using
clCreateFromD3D10Texture3DKHR, or if context was not created against the same
Direct3D 10 device from which resource was created.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the Direct3D 10 texture format of

resource is not listed in table 9.9.3 or if the Direct3D 10 texture format of resource does
not map to a supported OpenCL image format.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The width, height and depth of the returned OpenCL 3D image object are determined by the
width, height and depth of subresource subresource of resource. The channel type and order of
the returned OpenCL 3D image object is determined by the format of resource by table 9.9.3.

This call will increment the internal Direct3D reference count on resource. The internal
Direct3D reference count on resource will be decremented when the OpenCL reference count on
the returned OpenCL memory object drops to zero.

DXGI format CL image format
(channel order, channel data

type)
DXGI_FORMAT_R32G32B32A32_FLOAT CL_RGBA, CL_FLOAT
DXGI_FORMAT_R32G32B32A32_UINT CL_RGBA, CL_UNSIGNED_INT32
DXGI_FORMAT_R32G32B32A32_SINT CL_RGBA, CL_SIGNED_INT32

DXGI_FORMAT_R16G16B16A16_FLOAT CL_RGBA, CL_HALF_FLOAT

DXGI_FORMAT_R16G16B16A16_UNORM CL_RGBA, CL_UNORM_INT16
DXGI_FORMAT_R16G16B16A16_UINT CL_RGBA, CL_UNSIGNED_INT16

DXGI_FORMAT_R16G16B16A16_SNORM CL_RGBA, CL_SNORM_INT16
DXGI_FORMAT_R16G16B16A16_SINT CL_RGBA, CL_SIGNED_INT16

DXGI_FORMAT_R8G8B8A8_UNORM CL_RGBA, CL_UNORM_INT8

DXGI_FORMAT_R8G8B8A8_UINT CL_RGBA, CL_UNSIGNED_INT8
DXGI_FORMAT_R8G8B8A8_SNORM CL_RGBA, CL_SNORM_INT8

DXGI_FORMAT_R8G8B8A8_SINT CL_RGBA, CL_SIGNED_INT8

DXGI_FORMAT_R32G32_FLOAT CL_RG, CL_FLOAT
DXGI_FORMAT_R32G32_UINT CL_RG, CL_UNSIGNED_INT32
DXGI_FORMAT_R32G32_SINT CL_RG, CL_SIGNED_INT32

DXGI_FORMAT_R16G16_FLOAT CL_RG, CL_HALF_FLOAT

DXGI_FORMAT_R16G16_UNORM CL_RG, CL_UNORM_INT16

Last Revision Date: 11/13/11 Page 77

DXGI_FORMAT_R16G16_UINT CL_RG, CL_UNSIGNED_INT16
DXGI_FORMAT_R16G16_SNORM CL_RG, CL_SNORM_INT16

DXGI_FORMAT_R16G16_SINT CL_RG, CL_SIGNED_INT16

DXGI_FORMAT_R8G8_UNORM CL_RG, CL_UNORM_INT8
DXGI_FORMAT_R8G8_UINT CL_RG, CL_UNSIGNED_INT8

DXGI_FORMAT_R8G8_SNORM CL_RG, CL_SNORM_INT8
DXGI_FORMAT_R8G8_SINT CL_RG, CL_SIGNED_INT8

DXGI_FORMAT_R32_FLOAT CL_R, CL_FLOAT
DXGI_FORMAT_R32_UINT CL_R, CL_UNSIGNED_INT32
DXGI_FORMAT_R32_SINT CL_R, CL_SIGNED_INT32

DXGI_FORMAT_R16_FLOAT CL_R, CL_HALF_FLOAT

DXGI_FORMAT_R16_UNORM CL_R, CL_UNORM_INT16
DXGI_FORMAT_R16_UINT CL_R, CL_UNSIGNED_INT16

DXGI_FORMAT_R16_SNORM CL_R, CL_SNORM_INT16
DXGI_FORMAT_R16_SINT CL_R, CL_SIGNED_INT16

DXGI_FORMAT_R8_UNORM CL_R, CL_UNORM_INT8

DXGI_FORMAT_R8_UINT CL_R, CL_UNSIGNED_INT8
DXGI_FORMAT_R8_SNORM CL_R, CL_SNORM_INT8

DXGI_FORMAT_R8_SINT CL_R, CL_SIGNED_INT8

 Table 9.9.3 List of Direct3D 10 and corresponding OpenCL image formats

9.9.7.5 Querying Direct3D properties of memory objects created from
Direct3D 10 resources

Properties of Direct3D 10 objects may be queried using clGetMemObjectInfo and
clGetImageInfo with param_name CL_MEM_D3D10_RESOURCE_KHR and
CL_IMAGE_D3D10_SUBRESOURCE_KHR respectively as described in sections 5.4.3 and 5.3.6.

9.9.7.6 Sharing memory objects created from Direct3D 10 resources between
Direct3D 10 and OpenCL contexts

The function

cl_int clEnqueueAcquireD3D10ObjectsKHR (cl_command_queue command_queue,
 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

Last Revision Date: 11/13/11 Page 78

is used to acquire OpenCL memory objects that have been created from Direct3D 10 resources.
The Direct3D 10 objects are acquired by the OpenCL context associated with command_queue
and can therefore be used by all command-queues associated with the OpenCL context.

OpenCL memory objects created from Direct3D 10 resources must be acquired before they can
be used by any OpenCL commands queued to a command-queue. If an OpenCL memory object
created from a Direct3D 10 resource is used while it is not currently acquired by OpenCL, the
call attempting to use that OpenCL memory object will return
CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueAcquireD3D10ObjectsKHR provides the synchronization guarantee that any
Direct3D 10 calls involving the interop device(s) used in the OpenCL context made before
clEnqueueAcquireD3D10ObjectsKHR is called will complete executing before event reports
completion and before the execution of any subsequent OpenCL work issued in command_queue
begins. If the context was created with properties specifying
CL_CONTEXT_INTEROP_USER_SYNC as CL_TRUE, the user is responsible for guaranteeing
that any Direct3D 10 calls involving the interop device(s) used in the OpenCL context made
before clEnqueueAcquireD3D10ObjectsKHR is called have completed before calling
clEnqueueAcquireD3D10ObjectsKHR.

command_queue is a valid command-queue.

num_objects is the number of memory objects to be acquired in mem_objects.

mem_objects is a pointer to a list of OpenCL memory objects that were created from Direct3D
10 resources.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueAcquireD3D10ObjectsKHR returns CL_SUCCESS if the function is executed
successfully. If num_objects is 0 and mem_objects is NULL then the function does nothing and
returns CL_SUCCESS. Otherwise it returns one of the following errors:

 CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if

Last Revision Date: 11/13/11 Page 79

num_objects > 0 and mem_objects is NULL.

 CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL
memory objects or if memory objects in mem_objects have not been created from
Direct3D 10 resources.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue was not created

from an Direct3D 10 context.

 CL_D3D10_RESOURCE_ALREADY_ACQUIRED_KHR if memory objects in
mem_objects have previously been acquired using
clEnqueueAcquireD3D10ObjectsKHR but have not been released using
clEnqueueReleaseD3D10ObjectsKHR.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

cl_int clEnqueueReleaseD3D10ObjectsKHR (cl_command_queue command_queue,
 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

is used to release OpenCL memory objects that have been created from Direct3D 10 resources.
The Direct3D 10 objects are released by the OpenCL context associated with command_queue.

OpenCL memory objects created from Direct3D 10 resources which have been acquired by
OpenCL must be released by OpenCL before they may be accessed by Direct3D 10. Accessing
a Direct3D 10 resource while its corresponding OpenCL memory object is acquired is in error
and will result in undefined behavior, including but not limited to possible OpenCL errors, data
corruption, and program termination.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueReleaseD3D10ObjectsKHR provides the synchronization guarantee that any calls to
Direct3D 10 calls involving the interop device(s) used in the OpenCL context made after the call
to clEnqueueReleaseD3D10ObjectsKHR will not start executing until after all events in

Last Revision Date: 11/13/11 Page 80

event_wait_list are complete and all work already submitted to command_queue completes
execution. If the context was created with properties specifying
CL_CONTEXT_INTEROP_USER_SYNC as CL_TRUE, the user is responsible for guaranteeing
that any Direct3D 10 calls involving the interop device(s) used in the OpenCL context made
after clEnqueueReleaseD3D10ObjectsKHR will not start executing until after event returned
by clEnqueueReleaseD3D10ObjectsKHR reports completion.

num_objects is the number of memory objects to be released in mem_objects.

mem_objects is a pointer to a list of OpenCL memory objects that were created from Direct3D
10 resources.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in event
returns an event object that identifies this particular command and can be used to query or queue
a wait for this particular command to complete. event can be NULL in which case it will not be
possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueReleaseD3D10ObjectsKHR returns CL_SUCCESS if the function is executed
successfully. If num_objects is 0 and mem_objects is NULL the function does nothing and
returns CL_SUCCESS. Otherwise it returns one of the following errors:

 CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if
num_objects > 0 and mem_objects is NULL.

 CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL

memory objects or if memory objects in mem_objects have not been created from
Direct3D 10 resources.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue was not created

from a Direct3D 10 device.

 CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR if memory objects in mem_objects have
not previously been acquired using clEnqueueAcquireD3D10ObjectsKHR, or have
been released using clEnqueueReleaseD3D10ObjectsKHR since the last time that they
were acquired.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and

Last Revision Date: 11/13/11 Page 81

num_events_in_wait_list> is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

9.9.8 Issues

1) Should this extension be KHR or EXT?

PROPOSED: KHR. If this extension is to be approved by Khronos then it should be KHR,
otherwise EXT. Not all platforms can support this extension, but that is also true of OpenGL
interop.

RESOLVED: KHR.

2) Requiring SharedHandle on ID3D10Resource

Requiring this can largely simplify things at the DDI level and make some implementations
faster. However, the DirectX spec only defines the shared handle for a subset of the resources
we would like to support:

D3D10_RESOURCE_MISC_SHARED - Enables the sharing of resource data between
two or more Direct3D devices. The only resources that can be shared are 2D non-
mipmapped textures.

PROPOSED A: Add wording to the spec about some implementations needing the resource
setup as shared:

"Some implementations may require the resource to be shared on the D3D10 side of the API"

If we do that, do we need another enum to describe this failure case?

PROPOSED B: Require that all implementations support both shared and non-shared resources.
The restrictions prohibiting multisample textures and the flag D3D10_USAGE_IMMUTABLE
guarantee software access to all shareable resources.

RESOLVED: Require that implementations support both D3D10_RESOURCE_MISC_SHARED
being set and not set. Add the query for
CL_CONTEXT_D3D10_PREFER_SHARED_RESOURCES_KHR to determine on a per-context
basis which method will be faster.

3) Texture1D support

There is not a matching CL type, so do we want to support this and map to buffer or Texture2D?
If so the command might correspond to the 2D / 3D versions:

Last Revision Date: 11/13/11 Page 82

cl_mem clCreateFromD3D10Texture1D (cl_context context,

 cl_mem_flags flags,
 ID3D10Texture2D *resource,
 UINT subresource,
 cl_int *errcode_ret)

RESOLVED: We will not add support for ID3D10Texture1D objects unless a corresponding
OpenCL 1D Image type is created.

4) CL/D3D10 queries

The GL interop has clGetGLObjectInfo and clGetGLTextureInfo. It is unclear if these are
needed on the D3D10 interop side since the D3D10 spec makes these queries trivial on the
D3D10 object itself. Also, not all of the sematics of the GL call map across.

PROPOSED: Add the clGetMemObjectInfo and clGetImageInfo parameter names
CL_MEM_D3D10_RESOURCE_KHR and CL_IMAGE_D3D10_SUBRESOURCE_KHR to query the
D3D10 resource from which a cl_mem was created. From this data, any D3D10 side
information may be queried using the D3D10 API.

RESOLVED: We will use clGetMemObjectInfo and clGetImageInfo to access this
information.

Last Revision Date: 11/13/11 Page 83

9.10 DX9 Media Surface Sharing

9.10.1 Overview

The goal of this extension is to allow applications to use media surfaces as OpenCL memory
objects. This allows efficient sharing of data between OpenCL and selected adapter APIs (only
DX9 for now). If this extension is supported, an OpenCL image object can be created from a
media surface and the OpenCL API can be used to execute kernels that read and/or write
memory objects that are media surfaces. Note that OpenCL memory objects may be created
from the adapter media surface if and only if the OpenCL context has been created from that
adapter.

If this extension is supported by an implementation, the string cl_khr_dx9_media_sharing will
be present in the CL_PLATFORM_EXTENSIONS or CL_DEVICE_EXTENSIONS string described
in table 4.3.

9.10.2 Header File

As currently proposed the interfaces for this extension would be provided in
cl_dx9_media_sharing.h.

9.10.3 New Procedures and Functions

cl_int clGetDeviceIDsFromDX9MediaAdapterKHR (cl_platform_id platform,
 cl_uint num_media_adapters,
 cl_dx9_media_adapter_type_khr *media_adapters_type,

 void *media_adapters,
 cl_dx9_media_adapter_set_khr media_adapter_set,
 cl_uint num_entries,
 cl_device_id *devices,
 cl_int *num_devices)

cl_mem clCreateFromDX9MediaSurfaceKHR (cl_context context,

cl_mem_flags flags,
cl_dx9_media_adapter_type_khr adapter_type,
void *surface_info,
cl_uint plane,
cl_int *errcode_ret)

Last Revision Date: 11/13/11 Page 84

cl_int clEnqueueAcquireDX9MediaSurfacesKHR (
 cl_command_queue command_queue,

 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

cl_int clEnqueueReleaseDX9MediaSurfacesKHR (
 cl_command_queue command_queue,

 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

9.10.4 New Tokens

Accepted by the media_adapter_type parameter of
clGetDeviceIDsFromDX9MediaAdapterKHR:

CL_ADAPTER_D3D9_KHR 0x2020
CL_ADAPTER_D3D9EX_KHR 0x2021
CL_ADAPTER_DXVA_KHR 0x2022

Accepted by the media_adapter_set parameter of
clGetDeviceIDsFromDX9MediaAdapterKHR:

CL_PREFERRED_DEVICES_FOR_DX9_MEDIA_ADAPTER_KHR 0x2023
CL_ALL_DEVICES_FOR_DX9_MEDIA_ADAPTER_KHR 0x2024

Accepted as a property name in the properties parameter of clCreateContext and
clCreateContextFromType:

CL_CONTEXT_ADAPTER_D3D9_KHR 0x2025
CL_CONTEXT_ADAPTER_D3D9EX_KHR 0x2026
CL_CONTEXT_ADAPTER_DXVA_KHR 0x2027

Accepted as the property being queried in the param_name parameter of clGetMemObjectInfo:

CL_MEM_DX9_MEDIA_ADAPTER_TYPE_KHR 0x2028
CL_MEM_DX9_MEDIA_SURFACE_INFO_KHR 0x2029

Last Revision Date: 11/13/11 Page 85

Accepted as the property being queried in the param_name parameter of clGetImageInfo:

 CL_IMAGE_DX9_MEDIA_PLANE_KHR 0x202A

Returned in the param_value parameter of clGetEventInfo when param_name is
CL_EVENT_COMMAND_TYPE:

CL_COMMAND_ACQUIRE_DX9_MEDIA_SURFACES_KHR 0x202B
CL_COMMAND_RELEASE_DX9_MEDIA_SURFACES_KHR 0x202C

Returned by clCreateContext and clCreateContextFromType if the media adapter specified
for interoperability is not compatible with the devices against which the context is to be created:

CL_INVALID_DX9_MEDIA_ADAPTER_KHR -1010

Returned by clCreateFromDX9MediaSurfaceKHR when adapter_type is set to a media
adapter and the surface_info does not reference a media surface of the required type, or if
adapter_type is set to a media adapter type and surface_info does not contain a valid reference to
a media surface on that adapter, by clGetMemObjectInfo when param_name is a surface or
handle when the image was not created from an appropriate media surface, and from
clGetImageInfo when param_name is CL IMAGE_DX9_MEDIA_PLANE KHR and image was
not created from an appropriate media surface.

CL_INVALID_DX9_MEDIA_SURFACE_KHR -1011

Returned by clEnqueueAcquireDX9MediaSurfacesKHR when any of mem_objects are
currently acquired by OpenCL

CL_DX9_MEDIA_SURFACE_ALREADY_ACQUIRED_KHR -1012

Returned by clEnqueueReleaseDX9MediaSurfacesKHR when any of mem_objects are not
currently acquired by OpenCL

CL_DX9_MEDIA_SURFACE_NOT_ACQUIRED_KHR -1013

9.10.5 Additions to Chapter 4 of the OpenCL 1.2 Specification

In section 4.4, replace the description of properties under clCreateContext with:

"properties specifies a list of context property names and their corresponding values. Each
property is followed immediately by the corresponding desired value. The list is terminated with
zero. If a property is not specified in properties, then its default value (listed in table 4.5) is used
(it is said to be specified implicitly). If properties is NULL or empty (points to a list whose first
value is zero), all attributes take on their default values."

Last Revision Date: 11/13/11 Page 86

Add the following to table 4.5:

cl_context_properties enum Property value Description
CL_CONTEXT_ADAPTER_
D3D9_KHR

IDirect3DDevice9 * Specifies an IDirect3DDevice9
to use for D3D9 interop.

CL_CONTEXT_ADAPTER_
D3D9EX_KHR

IDirect3DDeviceEx* Specifies an
IDirect3DDevice9Ex to use for
D3D9 interop.

CL_CONTEXT_ADAPTER_
DXVA_KHR

IDXVAHD_Device * Specifies an IDXVAHD_Device
to use for DXVA interop.

Add to the list of errors for clCreateContext:

 CL_INVALID_ADAPTER_KHR if any of the values of the properties
CL_CONTEXT_ADAPTER_D3D9_KHR, CL_CONTEXT_ADAPTER_D3D9EX_KHR or
CL_CONTEXT_ADAPTER_DXVA_KHR is non-NULL and does not specify a valid media
adapter with which the cl_device_ids against which this context is to be created may
interoperate.

 CL_INVALID_OPERATION if interoperability is specified by setting

CL_CONTEXT_ADAPTER_D3D9_KHR, CL_CONTEXT_ADAPTER_D3D9EX_KHR or
CL_CONTEXT_ADAPTER_DXVA_KHR to a non-NULL value, and interoperability with
another graphics API is also specified."

Add to the list of errors for clCreateContextFromType the same new errors described above for
clCreateContext.

9.10.6 Additions to Chapter 5 of the OpenCL 1.2 Specification

Add to the list of errors for clGetMemObjectInfo:

 CL_INVALID_DX9_MEDIA_SURFACE_KHR if param_name is
CL_MEM_DX9_MEDIA_SURFACE_INFO_KHR and memobj was not created by the
function clCreateFromDX9MediaSurfaceKHR from a Direct3D9 surface.

Extend table 5.11 to include the following entry.

cl_mem_info Return type Info. returned in param_value
CL_MEM_DX9_MEDIA
ADAPTER_TYPE_KHR

cl_dx9_media_
adapter_type_khr

Returns the
cl_dx9_media_adapter_type_khr argument
value specified when memobj is created
using
clCreateFromDX9MediaSurfaceKHR.

Last Revision Date: 11/13/11 Page 87

CL_MEM_DX9_MEDIA
SURFACE_INFO_KHR

cl_dx9_surface_inf
o_khr

Returns the cl_dx9_surface_info_khr
argument value specified when memobj is
created using
clCreateFromDX9MediaSurfaceKHR.

Add to the list of errors for clGetImageInfo:

 CL_INVALID_DX9_MEDIA_SURFACE_KHR if param_name is
CL_IMAGE_DX9_MEDIA_PLANE_KHR and image was not created by the function
clCreateFromDX9MediaSurfaceKHR.

Extend table 5.9 to include the following entry.

cl_image_info Return type Info. returned in param_value
CL_IMAGE_DX9_MEDIA
_PLANE_KHR

cl_uint Returns the plane argument value specified
when memobj is created using
clCreateFromDX9MediaSurfaceKHR.

Add to table 5.18 in the Info returned in param_value column for cl_event_info =
CL_EVENT_COMMAND_TYPE:

CL_COMMAND_ACQUIRE_DX9_MEDIA_SURFACES_KHR
CL_COMMAND_RELEASE_DX9_MEDIA_SURFACES_KHR

9.10.7 Sharing Media Surfaces with OpenCL

This section discusses OpenCL functions that allow applications to use media surfaces as
OpenCL memory objects. This allows efficient sharing of data between OpenCL and media
surface APIs. The OpenCL API may be used to execute kernels that read and/or write memory
objects that are also media surfaces. An OpenCL image object may be created from a media
surface. OpenCL memory objects may be created from media surfaces if and only if the
OpenCL context has been created from a media adapter.

9.10.7.1 Querying OpenCL Devices corresponding to Media Adapters

Media adapters are an abstraction associated with devices that provide media capabilities.

The function

Last Revision Date: 11/13/11 Page 88

cl_int clGetDeviceIDsFromDX9MediaAdapterKHR (cl_platform_id platform,
 cl_uint num_media_adapters,

 cl_dx9_media_adapter_type_khr *media_adapters_type,
 void *media_adapters,
 cl_dx9_media_adapter_set_khr media_adapter_set,
 cl_uint num_entries,
 cl_device_id *devices,
 cl_int *num_devices)

queries a media adapter for any associated OpenCL devices. Adapters with associated OpenCL
devices can enable media surface sharing between the two.

platform refers to the platform ID returned by clGetPlatformIDs.

num_media_adapters specifies the number of media adapters.

media_adapters_type is an array of num_media_adapters entries. Each entry specifies the type
of media adapter and must be one of the values described in table 9.10.1.

cl_dx9_media_adapter_type_khr Type of media adapters

CL_ADAPTER_D3D9_KHR IDirect3DDevice9 *
CL_ADAPTER_D3D9EX_KHR IDirect3DDevice9Ex *
CL_ADAPTER_DXVA_KHR IDXVAHD_Device *

 Table 9.10.1 List of cl_dx9_media_adapter_type_khr values

cl_dx9_media_adapter_set_khr Description

CL_PREFERRED_DEVICES_FOR_
MEDIA_ADAPTER_KHR

The preferred OpenCL devices associated with the
media adapter.

CL_ALL_DEVICES_FOR_MEDIA_
ADAPTER_KHR

All OpenCL devices that may interoperate with the
media adapter

 Table 9.10.2 List of cl_dx9_media_adapter_set_khr values

media_adapters is an array of num_media_adapters entries. Each entry specifies the actual
adapter whose type is specified by media_adapter_type. The media_adapters must be one of the
types describes in table 9.10.1.

media_adapter_set specifies the set of adapters to return and must be one of the values described
in table 9.10.2.

num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL, the num_entries must be greater than zero.

Last Revision Date: 11/13/11 Page 89

devices returns a list of OpenCL devices found that support the list of media adapters specified.
The cl_device_id values returned in devices can be used to identify a specific OpenCL device. If
devices argument is NULL, this argument is ignored. The number of OpenCL devices returned is
the minimum of the value specified by num_entries or the number of OpenCL devices whose
type matches device_type.

num_devices returns the number of OpenCL devices. If num_devices is NULL, this argument is
ignored.

clGetDeviceIDsFromDX9MediaAdapterKHR returns CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_PLATFORM if platform is not a valid platform.

 CL_INVALID_VALUE if num_media_adapters is zero or if media_adapters_type is
NULL or if media_adapters is NULL.

 CL_INVALID_VALUE if any of the entries in media_adapters_type or media_adapters is
not a valid value.

 CL_INVALID_VALUE if media_adapter_set is not a valid value.

 CL_INVALID_VALUE if num_entries is equal to zero and devices is not NULL or if both

num_devices and devices are NULL.

 CL_DEVICE_NOT_FOUND if no OpenCL devices that correspond to adapters specified in
media_adapters and media_adapters_type were found.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

9.10.7.2 Creating Media Resources as OpenCL Image Objects

The function

cl_mem clCreateFromDX9MediaSurfaceKHR (cl_context context,
 cl_mem_flags flags,
 cl_dx9_media_adapter_type_khr adapter_type,
 void *surface_info,
 cl_uint plane,
 cl_int *errcode_ret)

Last Revision Date: 11/13/11 Page 90

creates an OpenCL image object from a media surface.

context is a valid OpenCL context created from a media adapter.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

adapter_type is a value from enumeration of supported adapters described in table 9.10.1. The
type of surface_info is determined by the adapter type. The implementation does not need to
support all adapter types. This approach provides flexibility to support additional adapter types
in the future. Supported adapter types are CL_ADAPTER_D3D9_KHR,
CL_ADAPTER_D3D9EX_KHR and CL_ADAPTER_DXVA_KHR.

If adapter_type is CL_ADAPTER_D3D9_KHR, CL_ADAPTER_D3D9EX_KHR and
CL_ADAPTER_DXVA_KHR, the surface_info points to the following structure:

typedef struct _cl_dx9_surface_info_khr
{

 IDirect3DSurface9 *resource;
HANDLE shared_handle;

} cl_dx9_surface_info_khr;

For DX9 surfaces, we need both the handle to the resource and the resource itself to have a
sufficient amount of information to eliminate a copy of the surface for sharing in cases where
this is possible. Elimination of the copy is driver dependent. shared_handle may be NULL and
this may result in sub-optimal performance.

surface_info is a pointer to one of the structures defined in the adapter_type description above
passed in as a void *.

plane is the plane of resource to share for planar surface formats. For planar formats, we use the
plane parameter to obtain a handle to thie specific plane (Y, U or V for example). For non-
planar formats used by media, plane must be 0.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateFromDX9MediaSurfaceKHR returns a valid non-zero 2D image object and
errcode_ret is set to CL_SUCCESS if the 2D image object is created successfully. Otherwise it
returns a NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid or if plane is not a valid
plane of resource specified in surface_info.

Last Revision Date: 11/13/11 Page 91

 CL_INVALID_DX9_MEDIA_SURFACE_KHR if resource specified in surface_info is not
a valid resource or is not associated with adapter_type (e.g., adapter_type is set to
CL_ADAPTER_D3D9_KHR and resource is not a Direct3D 9 surface created in
D3DPOOL_DEFAULT).

 CL_INVALID_DX9_MEDIA_SURFACE_KHR if shared_handle specified in surface_info

is not NULL or a valid handle value.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the texture format of resource is not
listed in tables 9.10.3 and 9.10.4.

 CL_INVALID_OPERATION if there are no devices in context that support adapter_type.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The width and height of the returned OpenCL 2D image object are determined by the width and
height of the plane of resource. The channel type and order of the returned image object is
determined by the format and plane of resource and are described in tables 9.10.3 and 9.10.4.

This call will increment the internal media surface count on resource. The internal media
surface reference count on resource will be decremented when the OpenCL reference count on
the returned OpenCL memory object drops to zero.

9.10.7.3 Querying Media Surface Properties of Memory Objects created
from Media Surfaces

Properties of media surface objects may be queried using clGetMemObjectInfo and
clGetImageInfo with param_name CL_MEM_DX9_MEDIA_ADAPTER_TYPE_KHR,
CL_MEM_DX9_MEDIA_SURFACE_INFO_KHR and CL_IMAGE_DX9_MEDIA_PLANE_KHR as
described in sections 5.4.3 and 5.3.6.

Last Revision Date: 11/13/11 Page 92

9.10.7.4 Sharing Memory Objects created from Media Surfaces between a
Media Adapter and OpenCL

The function

cl_int clEnqueueAcquireDX9MediaSurfacesKHR (
 cl_command_queue command_queue,

 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

is used to acquire OpenCL memory objects that have been created from a media surface. The
media surfaces are acquired by the OpenCL context associated with command_queue and can
therefore be used by all command-queues associated with the OpenCL context.

OpenCL memory objects created from media surfaces must be acquired before they can be used
by any OpenCL commands queued to a command-queue. If an OpenCL memory object created
from a media surface is used while it is not currently acquired by OpenCL, the call attempting to
use that OpenCL memory object will return
CL_DX9_MEDIA_SURFACE_NOT_ACQUIRED_KHR.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueAcquireDX9MediaSurfacesKHR provides the synchronization guarantee that any
media adapter API calls involving the interop device(s) used in the OpenCL context made before
clEnqueueAcquireDX9MediaSurfacesKHR is called will complete executing before event
reports completion and before the execution of any subsequent OpenCL work issued in
command_queue begins. If the context was created with properties specifying
CL_CONTEXT_INTEROP_USER_SYNC as CL_TRUE, the user is responsible for guaranteeing
that any media adapter API calls involving the interop device(s) used in the OpenCL context
made before clEnqueueAcquireDX9MediaSurfacesKHR is called have completed before
calling clEnqueueAcquireDX9MediaSurfacesKHR .

command_queue is a valid command-queue.

num_objects is the number of memory objects to be acquired in mem_objects.

mem_objects is a pointer to a list of OpenCL memory objects that were created from media
surfaces.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in

Last Revision Date: 11/13/11 Page 93

event_wait_list act as synchronization points.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueAcquireDX9MediaSurfacesKHR returns CL_SUCCESS if the function is executed
successfully. If num_objects is 0 and mem_objects is NULL then the function does nothing and
returns CL_SUCCESS. Otherwise it returns one of the following errors:

 CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if
num_objects > 0 and mem_objects is NULL.

 CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL

memory objects or if memory objects in mem_objects have not been created from media
surfaces.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue was not created

from a device that can share the media surface referenced by mem_objects.

 CL_DX9_MEDIA_SURFACE_ALREADY_ACQUIRED_KHR if memory objects in
mem_objects have previously been acquired using
clEnqueueAcquireDX9MediaSurfacesKHR but have not been released using
clEnqueueReleaseDX9MediaSurfacesKHR.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

cl_int clEnqueueReleaseDX9MediaSurfacesKHR (
 cl_command_queue command_queue,

 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

Last Revision Date: 11/13/11 Page 94

is used to release OpenCL memory objects that have been created from media surfaces. The
media surfaces are released by the OpenCL context associated with command_queue.

OpenCL memory objects created from media surfaces which have been acquired by OpenCL
must be released by OpenCL before they may be accessed by the media adapter API. Accessing
a media surface while its corresponding OpenCL memory object is acquired is in error and will
result in undefined behavior, including but not limited to possible OpenCL errors, data
corruption, and program termination.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueReleaseDX9MediaSurfacesKHR provides the synchronization guarantee that any
calls to media adapter APIs involving the interop device(s) used in the OpenCL context made
after the call to clEnqueueReleaseDX9MediaSurfacesKHR will not start executing until after
all events in event_wait_list are complete and all work already submitted to command_queue
completes execution. If the context was created with properties specifying
CL_CONTEXT_INTEROP_USER_SYNC as CL_TRUE, the user is responsible for guaranteeing
that any media adapter API calls involving the interop device(s) used in the OpenCL context
made after clEnqueueReleaseDX9MediaSurfacesKHR will not start executing until after event
returned by clEnqueueReleaseDX9MediaSurfacesKHR reports completion.

num_objects is the number of memory objects to be released in mem_objects.

mem_objects is a pointer to a list of OpenCL memory objects that were created from media
surfaces.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in event
returns an event object that identifies this particular command and can be used to query or queue
a wait for this particular command to complete. event can be NULL in which case it will not be
possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueReleaseDX9MediaSurfaceKHR returns CL_SUCCESS if the function is executed
successfully. If num_objects is 0 and <mem_objects> is NULL the function does nothing and
returns CL_SUCCESS. Otherwise it returns one of the following errors:

 CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if
num_objects > 0 and mem_objects is NULL.

 CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL

memory objects or if memory objects in mem_objects have not been created from valid

Last Revision Date: 11/13/11 Page 95

media surfaces.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue was not created
from a media object.

 CL_DX9_MEDIA_SURFACE_NOT_ACQUIRED_KHR if memory objects in mem_objects

have not previously been acquired using clEnqueueAcquireDX9MediaSurfacesKHR,
or have been released using clEnqueueReleaseDX9MediaSurfacesKHR since the last
time that they were acquired.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list> is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

9.10.7.5 Surface formats for Media Suface Sharing

This section includes the D3D surface formats that are supported when the adapter type is one of
the Direct 3D lineage . Using a D3D surface format not listed here is an error. To extend the use
of this extension to support media adapters beyond DirectX9 tables similar to the ones in this
section will need to be defined for the surface formats supported by the new media adapter. All
implementations that support this extension are required to support the NV12 surface format, the
other surface formats supported are the same surface formats that the adapter you are sharing
with supports as long as they are listed in the table 9.10.3 and table 9.10.4.

FOUR CC code CL image format
(channel order, channel data

type)
FOURCC(‘N’,’V’,’1’,’2’), Plane 0 CL_R, CL_UNORM_INT8
FOURCC(‘N’,’V’,’1’,’2’), Plane 1 CL_RG, CL_UNORM_INT8
FOURCC(‘Y’,’V’,’1’,’2’), Plane 0 CL_R, CL_UNORM_INT8
FOURCC(‘Y’,’V’,’1’,’2’), Plane 1 CL_R, CL_UNORM_INT8
FOURCC(‘Y’,’V’,’1’,’2’), Plane 2 CL_R, CL_UNORM_INT8

 Table 9.10.3 YUV FourCC codes and corresponding OpenCL image format

In table 9.10.3, NV12 Plane 0 corresponds to the luminance (Y) channel and Plane 1 corresponds
to the UV channels. The YV12 Plane 0 corresponds to the Y channel, Plane 1 corresponds to the
V channel and Plane 2 corresponds to the U channel. Note that the YUV formats map to CL_R
and CL_RG but do not perform any YUV to RGB conversion and vice-versa.

Last Revision Date: 11/13/11 Page 96

D3D format10 CL image format

(channel order, channel data
type)

D3DFMT_R32F CL_R, CL_FLOAT
D3DFMT_R16F CL_R, CL_HALF_FLOAT
D3DFMT_L16 CL_R, CL_UNORM_INT16
D3DFMT_A8 CL_A, CL_UNORM_INT8
D3DFMT_L8 CL_R, CL_UNORM_INT8

D3DFMT_G32R32F CL_RG, CL_FLOAT
D3DFMT_G16R16F CL_RG, CL_HALF_FLOAT
D3DFMT_G16R16 CL_RG, CL_UNORM_INT16

D3DFMT_A8L8 CL_RG, CL_UNORM_INT8

D3DFMT_A32B32G32R32F CL_RGBA, CL_FLOAT
D3DFMT_A16B16G16R16F CL_RGBA, CL_HALF_FLOAT
D3DFMT_A16B16G16R16 CL_RGBA, CL_UNORM_INT16

D3DFMT_A8B8G8R8 CL_RGBA, CL_UNORM_INT8
D3DFMT_X8B8G8R8 CL_RGBA, CL_UNORM_INT8
D3DFMT_A8R8G8B8 CL_BGRA, CL_UNORM_INT8
D3DFMT_X8R8G8B8 CL_BGRA, CL_UNORM_INT8

 Table 9.10.4 List of Direct3D and corresponding OpenCL image formats

10 Note that D3D9 format names seem to imply that the order of the color channels are switched relative to OpenCL
but this is not the case. For example, layout of channels for each pixel for D3DFMT_A32FB32FG32FR32F is the
same as CL_RGBA, CL_FLOAT.

Last Revision Date: 11/13/11 Page 97

9.11 Sharing Memory Objects with Direct3D 11

9.11.1 Overview

The goal of this extension is to provide interoperability between OpenCL and Direct3D 11. This
is designed to function analogously to the OpenGL interoperability as defined in sections 9.7 and
9.8. If this extension is supported by an implementation, the string cl_khr_d3d11_sharing will
be present in the CL_PLATFORM_EXTENSIONS or CL_DEVICE_EXTENSIONS string described
in table 4.3.

9.11.2 Header File

As currently proposed the interfaces for this extension would be provided in cl_d3d11.h.

9.11.3 New Procedures and Functions

cl_int clGetDeviceIDsFromD3D11KHR (cl_platform_id platform,
 cl_d3d11_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d11_device_set_khr d3d_device_set,
cl_uint num_entries,
cl_device_id *devices,
cl_uint *num_devices)

cl_mem clCreateFromD3D11BufferKHR (cl_context context,

 cl_mem_flags flags,
 ID3D11Buffer *resource,
 cl_int *errcode_ret)

cl_mem clCreateFromD3D11Texture2DKHR (cl_context context,

 cl_mem_flags flags,
 ID3D11Texture2D *resource,
 UINT subresource,
 cl_int *errcode_ret)

cl_mem clCreateFromD3D11Texture3DKHR (cl_context context,

 cl_mem_flags flags,
 ID3D11Texture3D *resource,
 UINT subresource,
 cl_int *errcode_ret)

Last Revision Date: 11/13/11 Page 98

 cl_int clEnqueueAcquireD3D11ObjectsKHR (cl_command_queue command_queue,

 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

 cl_int clEnqueueReleaseD3D11ObjectsKHR (cl_command_queue command_queue,

 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

9.11.4 New Tokens

Accepted as a Direct3D 11 device source in the d3d_device_source parameter of
clGetDeviceIDsFromD3D11KHR:

CL_D3D11_DEVICE_KHR 0x4019
CL_D3D11_DXGI_ADAPTER_KHR 0x401A

Accepted as a set of Direct3D 11 devices in the d3d_device_set parameter of
clGetDeviceIDsFromD3D11KHR:

CL_PREFERRED_DEVICES_FOR_D3D11_KHR 0x401B
CL_ALL_DEVICES_FOR_D3D11_KHR 0x401C

Accepted as a property name in the properties parameter of clCreateContext and
clCreateContextFromType:

CL_CONTEXT_D3D11_DEVICE_KHR 0x401D

Accepted as a property name in the param_name parameter of clGetContextInfo:

CL_CONTEXT_D3D11_PREFER_SHARED_RESOURCES_KHR 0x402D

Accepted as the property being queried in the param_name parameter of clGetMemObjectInfo:

CL_MEM_D3D11_RESOURCE_KHR 0x401E

Accepted as the property being queried in the param_name parameter of clGetImageInfo:

Last Revision Date: 11/13/11 Page 99

 CL_IMAGE_D3D11_SUBRESOURCE_KHR 0x401F

Returned in the param_value parameter of clGetEventInfo when param_name is
CL_EVENT_COMMAND_TYPE:

CL_COMMAND_ACQUIRE_D3D11_OBJECTS_KHR 0x4020
CL_COMMAND_RELEASE_D3D11_OBJECTS_KHR 0x4021

Returned by clCreateContext and clCreateContextFromType if the Direct3D 11 device
specified for interoperability is not compatible with the devices against which the context is to be
created:

CL_INVALID_D3D11_DEVICE_KHR -1006

Returned by clCreateFromD3D11BufferKHR when resource is not a Direct3D 11 buffer
object, and by clCreateFromD3D11Texture2DKHR and
clCreateFromD3D11Texture3DKHR when resource is not a Direct3D 11 texture object.

CL_INVALID_D3D11_RESOURCE_KHR -1007

Returned by clEnqueueAcquireD3D11ObjectsKHR when any of mem_objects are currently
acquired by OpenCL

CL_D3D11_RESOURCE_ALREADY_ACQUIRED_KHR -1008

Returned by clEnqueueReleaseD3D11ObjectsKHR when any of mem_objects are not currently
acquired by OpenCL

CL_D3D11_RESOURCE_NOT_ACQUIRED_KHR -1009

9.11.5 Additions to Chapter 4 of the OpenCL 1.2 Specification

In section 4.4, replace the description of properties under clCreateContext with:

"properties specifies a list of context property names and their corresponding values. Each
property is followed immediately by the corresponding desired value. The list is terminated with
zero. If a property is not specified in properties, then its default value (listed in table 4.5) is used
(it is said to be specified implicitly). If properties is NULL or empty (points to a list whose first
value is zero), all attributes take on their default values."

Add the following to table 4.5:

cl_context_properties enum Property value Description
CL_CONTEXT_D3D11_DEVICE_KHR ID3D11Device * Specifies the ID3D11Device *

Last Revision Date: 11/13/11 Page 100

to use for Direct3D 11
interoperability.

The default value is NULL.

Add to the list of errors for clCreateContext:

 CL_INVALID_D3D11_DEVICE_KHR if the value of the property
CL_CONTEXT_D3D11_DEVICE_KHR is non-NULL and does not specify a valid
Direct3D 11 device with which the cl_device_ids against which this context is to be
created may interoperate.

 CL_INVALID_OPERATION if Direct3D 11 interoperability is specified by setting

CL_INVALID_D3D11_DEVICE_KHR to a non-NULL value, and interoperability with
another graphics API is also specified."

Add to the list of errors for clCreateContextFromType the same new errors described above for
clCreateContext.

Add the following row to table 4.7:

cl_context_info Return Type Information returned in

param_value
CL_CONTEXT_D3D11_PREFER
_SHARED_RESOURCES_KHR

cl_bool Returns CL_TRUE if Direct3D 11
resources created as shared by setting
MiscFlags to include
D3D11_RESOURCE_MISC_SHARED
will perform faster when shared with
OpenCL, compared with resources
which have not set this flag. Otherwise
returns CL_FALSE.

9.11.6 Additions to Chapter 5 of the OpenCL 1.2 Specification

Add to the list of errors for clGetMemObjectInfo:

 CL_INVALID_D3D11_RESOURCE_KHR if param_name is
CL_MEM_D3D11_RESOURCE_KHR and memobj was not created by the function
clCreateFromD3D11BufferKHR, clCreateFromD3D11Texture2DKHR, or
clCreateFromD3D11Texture3DKHR."

Extend table 5.11 to include the following entry.

Last Revision Date: 11/13/11 Page 101

cl_mem_info Return type Info. returned in param_value
CL_MEM_D3D11_
RESOURCE_KHR

ID3D11Resource * If memobj was created using
clCreateFromD3D11BufferKHR,
clCreateFromD3D11Texture2DKHR, or
clCreateFromD3D11Texture3DKHR,
returns the resource argument specified
when memobj was created.

Add to the list of errors for clGetImageInfo:

 CL_INVALID_D3D11_RESOURCE_KHR if param_name is
CL_MEM_D3D11_SUBRESOURCE_KHR and image was not created by the function
clCreateFromD3D11Texture2DKHR, or clCreateFromD3D11Texture3DKHR."

Extend table 5.9 to include the following entry.

cl_image_info Return type Info. returned in param_value
CL_MEM_D3D11_
SUBRESOURCE_KHR

ID3D11Resource * If image was created using
clCreateFromD3D11Texture2DKHR, or
clCreateFromD3D11Texture3DKHR,
returns the subresource argument specified
when image was created.

Add to table 5.18 in the Info returned in param_value column for cl_event_info =
CL_EVENT_COMMAND_TYPE:

CL_COMMAND_ACQUIRE_D3D11_OBJECTS_KHR
CL_COMMAND_RELEASE_D3D11_OBJECTS_KHR

9.11.7 Sharing Memory Objects with Direct3D 11 Resources

This section discusses OpenCL functions that allow applications to use Direct3D 11 resources as
OpenCL memory objects. This allows efficient sharing of data between OpenCL and Direct3D
11. The OpenCL API may be used to execute kernels that read and/or write memory objects that
are also Direct3D 11 resources. An OpenCL image object may be created from a Direct3D 11
texture resource. An OpenCL buffer object may be created from a Direct3D 11 buffer resource.
OpenCL memory objects may be created from Direct3D 11 objects if and only if the OpenCL
context has been created from a Direct3D 11 device.

Last Revision Date: 11/13/11 Page 102

9.11.7.1 Querying OpenCL Devices Corresponding to Direct3D 11 Devices

The OpenCL devices corresponding to a Direct3D 11 device may be queried. The OpenCL
devices corresponding to a DXGI adapter may also be queried. The OpenCL devices
corresponding to a Direct3D 11 device will be a subset of the OpenCL devices corresponding to
the DXGI adapter against which the Direct3D 11 device was created.

The OpenCL devices corresponding to a Direct3D 11 device or a DXGI device may be queried
using the function

cl_int clGetDeviceIDsFromD3D11KHR (cl_platform_id platform,
cl_d3d11_device_source_khr d3d_device_source,
void *d3d_object,
cl_d3d11_device_set_khr d3d_device_set,
cl_uint num_entries,
cl_device_id *devices,
cl_uint *num_devices)

platform refers to the platform ID returned by clGetPlatformIDs.

d3d_device_source specifies the type of d3d_object, and must be one of the values shown in
table 9.11.1.

d3d_object specifies the object whose corresponding OpenCL devices are being queried. The
type of d3d_object must be as specified in table 9.11.1.

d3d_device_set specifies the set of devices to return, and must be one of the values shown in
table 9.11.2.

num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL then num_entries must be greater than zero.

devices returns a list of OpenCL devices found. The cl_device_id values returned in devices can
be used to identify a specific OpenCL device. If devices is NULL, this argument is ignored. The
number of OpenCL devices returned is the minimum of the value specified by num_entries and
the number of OpenCL devices corresponding to d3d_object.

num_devices returns the number of OpenCL devices available that correspond to d3d_object. If
num_devices is NULL, this argument is ignored.

clGetDeviceIDsFromD3D10KHR returns CL_SUCCESS if the function is executed
successfully. Otherwise it may return

 CL_INVALID_PLATFORM if platform is not a valid platform.

 CL_INVALID_VALUE if d3d_device_source is not a valid value, d3d_device_set is not a

Last Revision Date: 11/13/11 Page 103

valid value, num_entries is equal to zero and devices is not NULL, or if both
num_devices and devices are NULL.

 CL_DEVICE_NOT_FOUND if no OpenCL devices that correspond to d3d_object were

found.

cl_d3d_device_source_khr Type of d3d_object
CL_D3D11_DEVICE_KHR ID3D11Device *

CL_D3D11_DXGI_ADAPTER_KHR IDXGIAdapter *

 Table 9.11.1 Types used to specify the object whose corresponding OpenCL devices are
 being queried by clGetDeviceIDsFromD3D11KHR

cl_d3d_device_set_khr Devices returned in devices
CL_PREFERRED_DEVICES_FOR_D3D11_KHR The preferred OpenCL devices

associated with the specified
Direct3D object.

CL_ALL_DEVICES_FOR_D3D11_KHR All OpenCL devices which may
interoperate with the specified
Direct3D object. Performance of
sharing data on these devices may
be considerably less than on the
preferred devices.

 Table 9.11.2 Sets of devices queriable using clGetDeviceIDsFromD3D11KHR

9.11.7.2 Lifetime of Shared Objects

An OpenCL memory object created from a Direct3D 11 resource remains valid as long as the
corresponding Direct3D 11 resource has not been deleted. If the Direct3D 11 resource is deleted
through the Direct3D 11 API, subsequent use of the OpenCL memory object will result in
undefined behavior, including but not limited to possible OpenCL errors, data corruption, and
program termination.

The successful creation of a cl_context against a Direct3D 11 device specified via the context
create parameter CL_CONTEXT_D3D11_DEVICE_KHR will increment the internal Direct3D
reference count on the specified Direct3D 11 device. The internal Direct3D reference count on
that Direct3D 11 device will be decremented when the OpenCL reference count on the returned
OpenCL context drops to zero.

The OpenCL context and corresponding command-queues are dependent on the existence of the
Direct3D 11 device from which the OpenCL context was created. If the Direct3D 11 device is
deleted through the Direct3D 11 API, subsequent use of the OpenCL context will result in

Last Revision Date: 11/13/11 Page 104

undefined behavior, including but not limited to possible OpenCL errors, data corruption, and
program termination.

9.11.7.3 Sharing Direct3D 11 Buffer Resources as OpenCL Buffer Objects

The function

cl_mem clCreateFromD3D11BufferKHR (cl_context context,
 cl_mem_flags flags,
 ID3D11Buffer *resource,
 cl_int *errcode_ret)

creates an OpenCL buffer object from a Direct3D 11 buffer.

context is a valid OpenCL context created from a Direct3D 11 device.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

resource is a pointer to the Direct3D 11 buffer to share.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateFromD3D11BufferKHR returns a valid non-zero OpenCL buffer object and
errcode_ret is set to CL_SUCCESS if the buffer object is created successfully. Otherwise, it
returns a NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_D3D11_RESOURCE_KHR if resource is not a Direct3D 11 buffer resource,
if resource was created with the D3D11_USAGE flag D3D11_USAGE_IMMUTABLE, if a
cl_mem from resource has already been created using
clCreateFromD3D11BufferKHR, or if context was not created against the same
Direct3D 11 device from which resource was created.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The size of the returned OpenCL buffer object is the same as the size of resource. This call will
increment the internal Direct3D reference count on resource. The internal Direct3D reference
count on resource will be decremented when the OpenCL reference count on the returned

Last Revision Date: 11/13/11 Page 105

OpenCL memory object drops to zero.

9.11.7.4 Sharing Direct3D 11 Texture and Resources as OpenCL Image
Objects

The function

cl_mem clCreateFromD3D11Texture2DKHR (cl_context context,
 cl_mem_flags flags,
 ID3D11Texture2D *resource,
 UINT subresource,
 cl_int *errcode_ret)

creates an OpenCL 2D image object from a subresource of a Direct3D 11 2D texture.

context is a valid OpenCL context created from a Direct3D 11 device.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

resource is a pointer to the Direct3D 11 2D texture to share.

subresource is the subresource of resource to share.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateFromD3D11Texture2DKHR returns a valid non-zero OpenCL image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, it
returns a NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid or if subresource is not a
valid subresource index for resource.

 CL_INVALID_D3D11_RESOURCE_KHR if resource is not a Direct3D 11 texture

resource, if resource was created with the D3D11_USAGE flag
D3D11_USAGE_IMMUTABLE, if resource is a multisampled texture, if a cl_mem from
subresource subresource of resource has already been created using
clCreateFromD3D11Texture2DKHR, or if context was not created against the same
Direct3D 10 device from which resource was created.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the Direct3D 11 texture format of

Last Revision Date: 11/13/11 Page 106

resource is not listed in table 9.11.3 or if the Direct3D 11 texture format of resource does
not map to a supported OpenCL image format.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The width and height of the returned OpenCL 2D image object are determined by the width and
height of subresource subresource of resource. The channel type and order of the returned
OpenCL 2D image object is determined by the format of resource by table 9.11.3.

This call will increment the internal Direct3D reference count on resource. The internal
Direct3D reference count on resource will be decremented when the OpenCL reference count on
the returned OpenCL memory object drops to zero.

The function

cl_mem clCreateFromD3D11Texture3DKHR (cl_context context,
 cl_mem_flags flags,
 ID3D11Texture3D *resource,
 UINT subresource,
 cl_int *errcode_ret)

creates an OpenCL 3D image object from a subresource of a Direct3D 11 3D texture.

context is a valid OpenCL context created from a Direct3D 11 device.

flags is a bit-field that is used to specify usage information. Refer to table 5.3 for a description
of flags. Only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE
values specified in table 5.3 can be used.

resource is a pointer to the Direct3D 11 3D texture to share.

subresource is the subresource of resource to share.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateFromD3D11Texture3DKHR returns a valid non-zero OpenCL image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, it
returns a NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid or if subresource is not a
valid subresource index for resource.

Last Revision Date: 11/13/11 Page 107

 CL_INVALID_D3D11_RESOURCE_KHR if resource is not a Direct3D 11 texture

resource, if resource was created with the D3D11_USAGE flag
D3D11_USAGE_IMMUTABLE, if resource is a multisampled texture, if a cl_mem from
subresource subresource of resource has already been created using
clCreateFromD3D11Texture3DKHR, or if context was not created against the same
Direct3D 11 device from which resource was created.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the Direct3D 11 texture format of

resource is not listed in table 9.11.3 or if the Direct3D 11 texture format of resource does
not map to a supported OpenCL image format.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The width, height and depth of the returned OpenCL 3D image object are determined by the
width, height and depth of subresource subresource of resource. The channel type and order of
the returned OpenCL 3D image object is determined by the format of resource by table 9.9.3.

This call will increment the internal Direct3D reference count on resource. The internal
Direct3D reference count on resource will be decremented when the OpenCL reference count on
the returned OpenCL memory object drops to zero.

DXGI format CL image format
(channel order, channel data

type)
DXGI_FORMAT_R32G32B32A32_FLOAT CL_RGBA, CL_FLOAT
DXGI_FORMAT_R32G32B32A32_UINT CL_RGBA, CL_UNSIGNED_INT32
DXGI_FORMAT_R32G32B32A32_SINT CL_RGBA, CL_SIGNED_INT32

DXGI_FORMAT_R16G16B16A16_FLOAT CL_RGBA, CL_HALF_FLOAT

DXGI_FORMAT_R16G16B16A16_UNORM CL_RGBA, CL_UNORM_INT16
DXGI_FORMAT_R16G16B16A16_UINT CL_RGBA, CL_UNSIGNED_INT16

DXGI_FORMAT_R16G16B16A16_SNORM CL_RGBA, CL_SNORM_INT16
DXGI_FORMAT_R16G16B16A16_SINT CL_RGBA, CL_SIGNED_INT16

DXGI_FORMAT_R8G8B8A8_UNORM CL_RGBA, CL_UNORM_INT8

DXGI_FORMAT_R8G8B8A8_UINT CL_RGBA, CL_UNSIGNED_INT8
DXGI_FORMAT_R8G8B8A8_SNORM CL_RGBA, CL_SNORM_INT8

DXGI_FORMAT_R8G8B8A8_SINT CL_RGBA, CL_SIGNED_INT8

DXGI_FORMAT_R32G32_FLOAT CL_RG, CL_FLOAT
DXGI_FORMAT_R32G32_UINT CL_RG, CL_UNSIGNED_INT32
DXGI_FORMAT_R32G32_SINT CL_RG, CL_SIGNED_INT32

DXGI_FORMAT_R16G16_FLOAT CL_RG, CL_HALF_FLOAT

DXGI_FORMAT_R16G16_UNORM CL_RG, CL_UNORM_INT16

Last Revision Date: 11/13/11 Page 108

DXGI_FORMAT_R16G16_UINT CL_RG, CL_UNSIGNED_INT16
DXGI_FORMAT_R16G16_SNORM CL_RG, CL_SNORM_INT16

DXGI_FORMAT_R16G16_SINT CL_RG, CL_SIGNED_INT16

DXGI_FORMAT_R8G8_UNORM CL_RG, CL_UNORM_INT8
DXGI_FORMAT_R8G8_UINT CL_RG, CL_UNSIGNED_INT8

DXGI_FORMAT_R8G8_SNORM CL_RG, CL_SNORM_INT8
DXGI_FORMAT_R8G8_SINT CL_RG, CL_SIGNED_INT8

DXGI_FORMAT_R32_FLOAT CL_R, CL_FLOAT
DXGI_FORMAT_R32_UINT CL_R, CL_UNSIGNED_INT32
DXGI_FORMAT_R32_SINT CL_R, CL_SIGNED_INT32

DXGI_FORMAT_R16_FLOAT CL_R, CL_HALF_FLOAT

DXGI_FORMAT_R16_UNORM CL_R, CL_UNORM_INT16
DXGI_FORMAT_R16_UINT CL_R, CL_UNSIGNED_INT16

DXGI_FORMAT_R16_SNORM CL_R, CL_SNORM_INT16
DXGI_FORMAT_R16_SINT CL_R, CL_SIGNED_INT16

DXGI_FORMAT_R8_UNORM CL_R, CL_UNORM_INT8

DXGI_FORMAT_R8_UINT CL_R, CL_UNSIGNED_INT8
DXGI_FORMAT_R8_SNORM CL_R, CL_SNORM_INT8

DXGI_FORMAT_R8_SINT CL_R, CL_SIGNED_INT8

 Table 9.11.3 List of Direct3D 11 and corresponding OpenCL image formats

9.11.7.5 Querying Direct3D properties of memory objects created from
Direct3D 11 resources

Properties of Direct3D 11 objects may be queried using clGetMemObjectInfo and
clGetImageInfo with param_name CL_MEM_D3D11_RESOURCE_KHR and
CL_IMAGE_D3D11_SUBRESOURCE_KHR respectively as described in sections 5.4.3 and 5.3.6.

9.11.7.6 Sharing memory objects created from Direct3D 11 resources
between Direct3D 11 and OpenCL contexts

The function

cl_int clEnqueueAcquireD3D11ObjectsKHR (cl_command_queue command_queue,
 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

Last Revision Date: 11/13/11 Page 109

is used to acquire OpenCL memory objects that have been created from Direct3D 11 resources.
The Direct3D 11 objects are acquired by the OpenCL context associated with command_queue
and can therefore be used by all command-queues associated with the OpenCL context.

OpenCL memory objects created from Direct3D 11 resources must be acquired before they can
be used by any OpenCL commands queued to a command-queue. If an OpenCL memory object
created from a Direct3D 11 resource is used while it is not currently acquired by OpenCL, the
call attempting to use that OpenCL memory object will return
CL_D3D11_RESOURCE_NOT_ACQUIRED_KHR.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueAcquireD3D11ObjectsKHR provides the synchronization guarantee that any
Direct3D 11 calls involving the interop device(s) used in the OpenCL context made before
clEnqueueAcquireD3D11ObjectsKHR is called will complete executing before event reports
completion and before the execution of any subsequent OpenCL work issued in command_queue
begins. If the context was created with properties specifying
CL_CONTEXT_INTEROP_USER_SYNC as CL_TRUE, the user is responsible for guaranteeing
that any Direct3D 11 calls involving the interop device(s) used in the OpenCL context made
before clEnqueueAcquireD3D11ObjectsKHR is called have completed before calling
clEnqueueAcquireD3D11ObjectsKHR.

command_queue is a valid command-queue.

num_objects is the number of memory objects to be acquired in mem_objects.

mem_objects is a pointer to a list of OpenCL memory objects that were created from Direct3D
11 resources.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueAcquireD3D11ObjectsKHR returns CL_SUCCESS if the function is executed
successfully. If num_objects is 0 and mem_objects is NULL then the function does nothing and
returns CL_SUCCESS. Otherwise it returns one of the following errors:

 CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if

Last Revision Date: 11/13/11 Page 110

num_objects > 0 and mem_objects is NULL.

 CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL
memory objects or if memory objects in mem_objects have not been created from
Direct3D 11 resources.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue was not created

from an Direct3D 11 context.

 CL_D3D11_RESOURCE_ALREADY_ACQUIRED_KHR if memory objects in
mem_objects have previously been acquired using
clEnqueueAcquireD3D11ObjectsKHR but have not been released using
clEnqueueReleaseD3D11ObjectsKHR.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

cl_int clEnqueueReleaseD3D11ObjectsKHR (cl_command_queue command_queue,
 cl_uint num_objects,
 const cl_mem *mem_objects,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

is used to release OpenCL memory objects that have been created from Direct3D 11 resources.
The Direct3D 11 objects are released by the OpenCL context associated with command_queue.

OpenCL memory objects created from Direct3D 11 resources which have been acquired by
OpenCL must be released by OpenCL before they may be accessed by Direct3D 11. Accessing
a Direct3D 11 resource while its corresponding OpenCL memory object is acquired is in error
and will result in undefined behavior, including but not limited to possible OpenCL errors, data
corruption, and program termination.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueReleaseD3D11ObjectsKHR provides the synchronization guarantee that any calls to
Direct3D 11 calls involving the interop device(s) used in the OpenCL context made after the call
to clEnqueueReleaseD3D11ObjectsKHR will not start executing until after all events in

Last Revision Date: 11/13/11 Page 111

event_wait_list are complete and all work already submitted to command_queue completes
execution. If the context was created with properties specifying
CL_CONTEXT_INTEROP_USER_SYNC as CL_TRUE, the user is responsible for guaranteeing
that any Direct3D 11 calls involving the interop device(s) used in the OpenCL context made
after clEnqueueReleaseD3D11ObjectsKHR will not start executing until after event returned
by clEnqueueReleaseD3D11ObjectsKHR reports completion.

num_objects is the number of memory objects to be released in mem_objects.

mem_objects is a pointer to a list of OpenCL memory objects that were created from Direct3D
11 resources.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in event
returns an event object that identifies this particular command and can be used to query or queue
a wait for this particular command to complete. event can be NULL in which case it will not be
possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueReleaseD3D11ObjectsKHR returns CL_SUCCESS if the function is executed
successfully. If num_objects is 0 and mem_objects is NULL the function does nothing and
returns CL_SUCCESS. Otherwise it returns one of the following errors:

 CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if
num_objects > 0 and mem_objects is NULL.

 CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL

memory objects or if memory objects in mem_objects have not been created from
Direct3D 11 resources.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue was not created

from a Direct3D 11 device.

 CL_D3D11_RESOURCE_NOT_ACQUIRED_KHR if memory objects in mem_objects have
not previously been acquired using clEnqueueAcquireD3D11ObjectsKHR, or have
been released using clEnqueueReleaseD3D11ObjectsKHR since the last time that they
were acquired.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and

Last Revision Date: 11/13/11 Page 112

num_events_in_wait_list> is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/13/11 Page 113

9.12 OpenCL Installable Client Driver (ICD)

9.12.1 Overview

This is a platform extension which defines a simple mechanism through which the Khronos
OpenCL installable client driver loader (ICD Loader) may expose multiple separate vendor
installable client drivers (Vendor ICDs) for OpenCL. An application written against the ICD
Loader will be able to access all cl_platform_ids exposed by all vendor implementations with the
ICD Loader acting as a demultiplexor. If this extension is supported by an implementation, the
string cl_khr_icd will be present in the CL_PLATFORM_EXTENSIONS string described in table
4.1.

9.12.2 Inferring Vendors from Function Calls from Arguments

At every OpenCL function call, the ICD Loader infers the vendor ICD function to call from the
arguments to the function. An object is said to be ICD compatible if it is of the following
structure:

struct _cl_<object>
{

struct _cl_icd_dispatch *dispatch;
// ... remainder of internal data

};

<object> is one of platform_id, device_id, context, command_queue, mem,
program, kernel, event, or sampler.

The structure _cl_icd_dispatch is a function pointer dispatch table which is used to direct
calls to a particular vendor implementation. All objects created from ICD compatible objects
must be ICD compatible.

A link to source code which defines the entries in the function table structure
_cl_icd_dispatch is available in the Sample Code section of this document. The order of
the functions in _cl_icd_dispatch is determined by the ICD Loader's source. The ICD
Loader's source's _cl_icd_dispatch table is to be appended to only.

Functions which do not have an argument from which the vendor implementation may be
inferred are ignored, with the exception of clGetExtensionFunctionAddress which is described
below.

Last Revision Date: 11/13/11 Page 114

9.12.3 ICD Data

A Vendor ICD is defined by two pieces of data:

 The Vendor ICD library specifies a library which contains the OpenCL entrypoints for
the vendor's OpenCL implementation. The vendor ICD's library file name should include
the vendor name, or a vendor-specific implementation identifier.

 The Vendor ICD extension suffix is a short string which specifies the default suffix for
extensions implemented only by that vendor. See Additions to Chapter 9 for details on
the mechanism through which this is accomplished. The vendor suffix string is optional.

9.12.4 ICD Loader Vendor Enumeration on Windows

To enumerate Vendor ICDs on Windows, the ICD Loader scans the values in the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\OpenCL\Vendors. For each value in
this key which has DWORD data set to 0, the ICD Loader opens the dynamic link library
specified by the name of the value using LoadLibraryA.

For example, if the registry contains the following value

 [HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\OpenCL\Vendors]
 "c:\\vendor a\\vndra_ocl.dll"=dword:00000000

then the ICD will open the library "c:\vendor a\vndra_ocl.dll".

9.12.5 ICD Loader Vendor Enumeration on Linux

To enumerate vendor ICDs on Linux, the ICD Loader scans the files in the path
/etc/OpenCL/vendors. For each file in this path, the ICD Loader opens the file as a text
file. The expected format for the file is a single line of text which specifies the Vendor ICD's
library. The ICD Loader will attempt to open that file as a shared object using dlopen().
Note that the library specified may be an absolute path or just a file name.

For example, if the following file exists /etc/OpenCL/vendors/VendorA.icd and
contains the text libVendorAOpenCL.so then the ICD Loader will load the library
"libVendorAOpenCL.so".

9.12.6 Adding a Vendor Library

Upon successfully loading a Vendor ICD's library, the ICD Loader queries the following

Last Revision Date: 11/13/11 Page 115

functions from the library: clIcdGetPlatformIDsKHR, clGetPlatformInfo, and
clGetExtensionFunctionAddress. If any of these functions are not present then the ICD Loader
will close and ignore the library.

Next the ICD Loader queries available ICD-enabled platforms in the library using
clIcdGetPlatformIDsKHR. For each of these platforms, the ICD Loader queries the platform's
extension string to verify that cl_khr_icd is supported, then queries the platform's Vendor ICD
extension suffix using clGetPlatformInfo with the value CL_PLATFORM_ICD_SUFFIX_KHR.

If any of these steps fail, the ICD Loader will ignore the Vendor ICD and continue on to the
next.

9.12.7 New Procedures and Functions

 cl_int clIcdGetPlatformIDsKHR (cl_uint num_entries,
 cl_platform_id *platforms,

 cl_uint *num_platforms);

9.12.8 New Tokens

Accepted as param_name to the function clGetPlatformInfo

CL_PLATFORM_ICD_SUFFIX_KHR 0x0920

Returned by clGetPlatformIDs when no platforms are found

CL_PLATFORM_NOT_FOUND_KHR -1001

9.12.9 Additions to Chapter 4 of the OpenCL 1.2 Specification

In section 4.1, replace the description of the return values of clGetPlatformIDs with:

"clGetPlatformIDs returns CL_SUCCESS if the function is executed successfully and there are a
non zero number of platforms available. It returns CL_PLATFORM_NOT_FOUND_KHR if
zero platforms are available. It returns CL_INVALID_VALUE if <num_entries> is equal to
zero and <platforms> is not NULL or if both <num_platforms> and <platforms> are NULL."

In section 4.1, add the following after the description of clGetPlatformIDs:

"The list of platforms accessible through the Khronos ICD Loader can be obtained using the

Last Revision Date: 11/13/11 Page 116

following function:

cl_int clIcdGetPlatformIDsKHR (cl_uint num_entries,
 cl_platform_id *platforms,
 cl_uint *num_platforms);

num_entries is the number of cl_platform_id entries that can be added to platforms. If platforms
is not NULL, then num_entries must be greater than zero.

platforms returns a list of OpenCL platforms available for access through the Khronos ICD
Loader. The cl_platform_id values returned in platforms are ICD compatible and can be used to
identify a specific OpenCL platform. If the platforms argument is NULL, then this argument is
ignored. The number of OpenCL platforms returned is the minimum of the value specified by
num_entries or the number of OpenCL platforms available.

num_platforms returns the number of OpenCL platforms available. If num_platforms is NULL,
then this argument is ignored.

clIcdGetPlatformIDsKHR returns CL_SUCCESS if the function is executed successfully and
there are a non zero number of platforms available. It returns
CL_PLATFORM_NOT_FOUND_KHR if zero platforms are available. It returns
CL_INVALID_VALUE if num_entries is equal to zero and platforms is not NULL or if both
num_platforms and platforms are NULL."

Add the following to table 4.1:

cl_platform_info enum Return Type Description
CL_PLATFORM_ICD_SUFFIX_KHR char[] The function name suffix used to

identify extension functions to be
directed to this platform by the ICD
Loader.

9.12.10 Additions to Chapter 9 of the OpenCL 1.2 Extension
Specification

Add the following paragraph to the end of Section 9.2:

"For functions supported by the ICD Loader, clGetExtensionFunctionAddress will return the
function pointer of the ICD Loader implementation. For extension functions which the ICD
Loader is unaware of, the function clGetExtensionFunctionAddress will determine the vendor
implementation to return based on the string passed in. The ICD Loader will return the result
from querying clGetExtensionFunctionAddress on the vendor ICD enumerated by the ICD
Loader whose ICD suffix is a suffix of the function name being queried. If no such vendor exists

Last Revision Date: 11/13/11 Page 117

or the suffix of the function is KHR or EXT then clGetExtensionFunctionAddress will return
NULL."

9.12.11 Issues

1. Some OpenCL functions do not take an object argument from which their vendor library may
be identified (e.g, clUnloadCompiler), how will they be handled?

RESOLVED: Such functions will be a noop for all calls through the ICD.

2. How are OpenCL extension to be handled?

RESOLVED: OpenCL extension functions may be added to the ICD as soon as they are
implemented by any vendor. The suffix mechanism provides access for vendor extensions which
are not yet added to the ICD.

3: How will the ICD handle a NULL cl_platform_id?

RESOLVED: The NULL platform is not supported by the ICD.

4. There exists no mechanism to unload the ICD, should there be one?

RESOLVED: As there is no standard mechanism for unloading a vendor implementation, do not
add one for the ICD.

Last Revision Date: 11/13/11 Page 118

Index - APIs

clCreateEventFromGLsyncKHR, 62
clCreateFrom DX9MediaSurfaceKHR, 89
clCreateFromD3D10BufferKHR, 73
clCreateFromD3D10Texture2DKHR, 74
clCreateFromD3D10Texture3DKHR, 75
clCreateFromD3D11BufferKHR, 104
clCreateFromD3D11Texture2DKHR, 105
clCreateFromD3D11Texture3DKHR, 106
clCreateFromGLBuffer, 49
clCreateFromGLRenderbuffer, 53
clCreateFromGLTexture, 50
clEnqueueAcquire

DX9MediaSurfacesKHR, 92
clEnqueueAcquireD3D10ObjectsKHR,

77, 92, 93
clEnqueueAcquireD3D11ObjectsKHR,

108

clEnqueueAcquireGLObjects, 56
clEnqueueRelease

DX9MediaSurfacesKHR, 93
clEnqueueReleaseD3D10ObjectsKHR, 79
clEnqueueReleaseD3D11ObjectsKHR,

110
clEnqueueReleaseGLObjects, 58
clGetDeviceIDsFromD3D10KHR, 71
clGetDeviceIDsFromD3D11KHR, 102
clGetDeviceIDsFromDX9MediaAdapterK

HR, 88
clGetExtensionFunctionAddressForPlatfo

rm, 7
clGetGLObjectInfo, 54
clGetGLTextureInfo, 55
clIcdGetPlatformIDsKHR, 115

	Table of Contents
	9. Optional Extensions
	9.1 Compiler Directives for Optional Extensions
	9.2 Getting OpenCL API Extension FunctionPointers
	9.3 64-bit Atomics
	9.4 Writing to 3D image memory objects
	9.5 Half Precision Floating-Point
	9.5.1 Conversions
	9.5.2 Math Functions
	9.5.3 Common Functions
	9.5.4 Geometric Functions
	9.5.5 Relational Functions
	9.5.6 Vector Data Load and Store Functions
	9.5.7 Async Copies from Global to Local Memory, Local toGlobal Memory, and Prefetch
	9.5.8 Image Read and Write Functions
	9.5.9 IEEE754 Compliance
	9.5.10 Relative Error as ULPs

	9.6 Creating CL context from a GL context or sharegroup
	9.6.1 Overview
	9.6.2 New Procedures and Functions
	9.6.3 New Tokens
	9.6.4 Additions to Chapter 4 of the OpenCL 1.2 Specification
	9.6.5 Additions to section 9.7 of the OpenCL 1.2 ExtensionSpecification
	9.6.6 Issues

	9.7 Sharing Memory Objects with OpenGL / OpenGLES Buffer, Texture and Renderbuffer Objects
	9.7.1 Lifetime of Shared Objects
	9.7.2 CL Buffer Objects à GL Buffer Objects
	9.7.3 CL Image Objects à GL Textures
	9.7.3.1 List of OpenGL and corresponding OpenCL Image Formats

	9.7.4 CL Image Objects à GL Renderbuffers
	9.7.5 Querying GL object information from a CL memoryobject
	9.7.6 Sharing memory objects that map to GL objectsbetween GL and CL contexts
	9.7.6.1 Synchronizing OpenCL and OpenGL Access to Shared Objects

	9.8 Creating CL event objects from GL sync objects
	9.8.1 Overview
	9.8.2 New Procedures and Functions
	9.8.3 New Tokens
	9.8.4 Additions to Chapter 5 of the OpenCL 1.2 Specification
	9.8.5 Additions to Chapter 9 of the OpenCL 1.2 Specification
	9.8.6 Issues

	9.9 Sharing Memory Objects with Direct3D 10
	9.9.1 Overview
	9.9.2 Header File
	9.9.3 New Procedures and Functions
	9.9.4 New Tokens
	9.9.5 Additions to Chapter 4 of the OpenCL 1.2 Specification
	9.9.6 Additions to Chapter 5 of the OpenCL 1.2 Specification
	9.9.7 Sharing Memory Objects with Direct3D 10 Resources
	9.9.7.1 Querying OpenCL Devices Corresponding to Direct3D 10 Devices
	9.9.7.2 Lifetime of Shared Objects
	9.9.7.3 Sharing Direct3D 10 Buffer Resources as OpenCL Buffer Objects
	9.9.7.4 Sharing Direct3D 10 Texture and Resources as OpenCL ImageObjects
	9.9.7.5 Querying Direct3D properties of memory objects created fromDirect3D 10 resources
	9.9.7.6 Sharing memory objects created from Direct3D 10 resources betweenDirect3D 10 and OpenCL contexts

	9.9.8 Issues

	9.10 DX9 Media Surface Sharing
	9.10.1 Overview
	9.10.2 Header File
	9.10.3 New Procedures and Functions
	9.10.4 New Tokens
	9.10.5 Additions to Chapter 4 of the OpenCL 1.2 Specification
	9.10.6 Additions to Chapter 5 of the OpenCL 1.2 Specification
	9.10.7 Sharing Media Surfaces with OpenCL
	9.10.7.1 Querying OpenCL Devices corresponding to Media Adapters
	9.10.7.2 Creating Media Resources as OpenCL Image Objects
	9.10.7.3 Querying Media Surface Properties of Memory Objects createdfrom Media Surfaces
	9.10.7.4 Sharing Memory Objects created from Media Surfaces between aMedia Adapter and OpenCL
	9.10.7.5 Surface formats for Media Suface Sharing

	9.11 Sharing Memory Objects with Direct3D 11
	9.11.1 Overview
	9.11.2 Header File
	9.11.3 New Procedures and Functions
	9.11.4 New Tokens
	9.11.5 Additions to Chapter 4 of the OpenCL 1.2 Specification
	9.11.6 Additions to Chapter 5 of the OpenCL 1.2 Specification
	9.11.7 Sharing Memory Objects with Direct3D 11 Resources
	9.11.7.1 Querying OpenCL Devices Corresponding to Direct3D 11 Devices
	9.11.7.2 Lifetime of Shared Objects
	9.11.7.3 Sharing Direct3D 11 Buffer Resources as OpenCL Buffer Objects
	9.11.7.4 Sharing Direct3D 11 Texture and Resources as OpenCL ImageObjects
	9.11.7.5 Querying Direct3D properties of memory objects created fromDirect3D 11 resources
	9.11.7.6 Sharing memory objects created from Direct3D 11 resourcesbetween Direct3D 11 and OpenCL contexts

	9.12 OpenCL Installable Client Driver (ICD)
	9.12.1 Overview
	9.12.2 Inferring Vendors from Function Calls from Arguments
	9.12.3 ICD Data
	9.12.4 ICD Loader Vendor Enumeration on Windows
	9.12.5 ICD Loader Vendor Enumeration on Linux
	9.12.6 Adding a Vendor Library
	9.12.7 New Procedures and Functions
	9.12.8 New Tokens
	9.12.9 Additions to Chapter 4 of the OpenCL 1.2 Specification
	9.12.10 Additions to Chapter 9 of the OpenCL 1.2 ExtensionSpecification
	9.12.11 Issues

	Index - APIs

