How to get all the values in an array?

Discussion created by swissbaboon on Apr 18, 2010
Latest reply on Apr 23, 2012 by paladice


Hello everybody, I've written a little program based on the "Hello world" and the "oclVectorAdd" programs. The final objective is to make image processing.

My programs loads an image as an 1D array, submit it to the kernel to be solved first by the CPU, then by the GPU. Both results are saved as 2 images (1 for CPU and one for GPU).

My problem is, when I see other programs they only need to write "get_global_id(0)" to solve all the values in the array. With my kernel only 1 valu on 4 is solved, the others stay at 0.


My kernel is only doing now as a test for a greyscale image:

ImageOutput (i) = ImageInput (i)


All the examples propose:

i = get_global_id(0);

ImageOutput (i) = ImageInput (i);


I use a technic, which doesn't really work is really heavy. When I do it, I can attribute all the values except the the second (for i=1), which stays at 0.


Thanks a lot in advance for your help.


Here you'll find attached the kernel code and the C code. (I use 2 functions to load and save the pictures taken from the SOIL library that you can find at:

//////////////////////////////OpenCL Calcul Code//////////////////////////////// __kernel void Image_Processing( __global const unsigned char* ImageInput, __global unsigned char* ImageOutput) //__global const int nbr_val_image) { int gti = get_global_id(0); int ti = get_local_id(0); int n = get_global_size(0); int nt = get_local_size(0); int nb = n/nt; int i; for(int j=0; j<=nt; j++) { i = gti+j*ti; ImageOutput[i] = ImageInput[i]; } // barrier(CLK_GLOBAL_MEM_FENCE); return; } ////////////////////Host code/////////////////////// #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <unistd.h> #include <sys/types.h> #include <OpenCL/opencl.h> #include <time.h> #include "SOIL.h" //////////////////////////////////////////////////////////////////////////////// /////////////////////////////////Main Code////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// int main (int argc, const char * argv[]) { //Declar Functions char * LoadFile2txt(const char *File); //Declar Variables int err; // error code returned from api calls int gpu; int width; int height; int channels; int TimeTotGPU; int TimeKernGPU; int TimeTotCPU; int TimeKernCPU; // int RunLevel; //GLuint *monImage; const char* cSourceFile = ""; char filename[]= "Test3.bmp"; char *KernelSource; size_t local; // local domain size for our calculation cl_device_id device_id; // compute device id cl_context context; // compute context cl_command_queue commands; // compute command queue cl_program program; // compute program cl_kernel kernel; // compute kernel cl_mem ImageInput; // device memory used for the input array cl_mem ImageOutput; // device memory used for the output array //cl_mem nbrPixel; unsigned char *monImage = SOIL_load_image(filename,&width, &height, &channels, SOIL_LOAD_L); unsigned char *imageTraitee; channels=1; int nbr_val_image = width * height * channels; printf("Image width: %d \n", width); printf("Image height: %d \n", height); printf("Image channels: %d \n", channels); printf("nbr_val_image de: %d \n", nbr_val_image); printf("Vals pix monImage:\n%d %d %d\n%d %d %d\n%d %d %d\n%d %d %d\n\n", monImage[0], monImage[1], monImage[2], monImage[3], monImage[4], monImage[5], monImage[6], monImage[7], monImage[8], monImage[9], monImage[10], monImage[11]); // Ajuste le nombre de valeurs de l'image au multiple de 256 au-dessus pour la création de la mémoire tampon // size_t LocalWorkSize = 256; size_t GlobalWorkzise = ceil((double)nbr_val_image/(double)LocalWorkSize)*LocalWorkSize; monImage = (void *)realloc(monImage,sizeof(cl_uchar)*GlobalWorkzise); imageTraitee = (void *)malloc(sizeof(cl_uchar)*GlobalWorkzise); for(gpu=0;gpu<2;gpu++) { // Prise de temps début de résolution GPU clock_t TimeStartSolve = clock (); // Connect to a compute device // err = clGetDeviceIDs(NULL, gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU, 1, &device_id, NULL); // if gpu=0 : solving on CPU, if gpu=1 : solving on GPU if (err != CL_SUCCESS) { printf("Error: Failed to create a device group!\n"); return EXIT_FAILURE; } // Create a compute context // context = clCreateContext(0, 1, &device_id, NULL, NULL, &err); if (!context) { printf("Error: Failed to create a compute context!\n"); return EXIT_FAILURE; } // Create a command commands // commands = clCreateCommandQueue(context, device_id, 0, &err); if (!commands) { printf("Error: Failed to create a command commands!\n"); return EXIT_FAILURE; } // Create the input and output arrays in device memory for our calculation // ImageInput = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(cl_uchar) * GlobalWorkzise, NULL, NULL); //nbrPixel = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(cl_int) * GlobalWorkzise, NULL, NULL); ImageOutput = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(cl_uchar) * GlobalWorkzise, NULL, NULL); if (!ImageInput || !ImageOutput) { printf("Error: Failed to allocate device memory!\n"); exit(1); } // Create the compute program from the source buffer // KernelSource = LoadFile2txt (cSourceFile); program = clCreateProgramWithSource(context, 1, (const char **) &KernelSource, NULL, &err); if (!program) { printf("Error: Failed to create compute program!\n"); return EXIT_FAILURE; } // Build the program executable // err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); if (err != CL_SUCCESS) { size_t len; char buffer[2048]; printf("Error: Failed to build program executable!\n"); clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len); printf("%s\n", buffer); exit(1); } // Create the compute kernel in the program we wish to run // kernel = clCreateKernel(program, "Image_Processing", &err); if (!kernel || err != CL_SUCCESS) { printf("Error: Failed to create compute kernel!\n"); exit(1); } // Set the arguments to our compute kernel // err = 0; err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &ImageInput); err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &ImageOutput); //err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &nbrPixel); if (err != CL_SUCCESS) { printf("Error: Failed to set kernel arguments! %d\n", err); exit(1); } // Write our data set into the input array in device memory // err = clEnqueueWriteBuffer(commands, ImageInput, CL_TRUE, 0, sizeof(cl_uchar) * GlobalWorkzise, monImage, 0, NULL, NULL); //err |= clEnqueueWriteBuffer(commands, nbrPixel , CL_TRUE, 0, sizeof(int) * GlobalWorkzise, nbr_val_image, 0, NULL, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to write to source array!\n"); exit(1); } // Get the maximum work group size for executing the kernel on the device // err = clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to retrieve kernel work group info! %d\n", err); exit(1); } //printf("local = %d\n", (int)local); // Prise de temps début de résolution du kernel clock_t TimeStartKernel = clock (); // Execute the kernel over the entire range of our 1d input data set // using the maximum number of work group items for this device // err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &GlobalWorkzise, &local, 0, NULL, NULL); if (err) { printf("Error: Failed to execute kernel!\n"); return EXIT_FAILURE; } // Wait for the command commands to get serviced before reading back results // clFinish(commands); clock_t TimeFinishKernel = clock (); // Read back the results from the device to verify the output // err = clEnqueueReadBuffer(commands, ImageOutput, CL_TRUE, 0, sizeof(cl_uchar) * GlobalWorkzise, imageTraitee, 0, NULL, NULL ); if (err != CL_SUCCESS) { printf("Error: Failed to read output array! %d\n", err); exit(1); } // Prise de temps fin résolution du kernel clock_t TimeFinishSolve = clock (); int TimeGPU = (((TimeFinishSolve - TimeStartSolve) *1e6) / CLOCKS_PER_SEC); int TimeKernel = (((TimeFinishKernel - TimeStartKernel)*1e6) / CLOCKS_PER_SEC); printf("Vals pix imageTraitee:\n%d %d %d\n%d %d %d\n%d %d %d\n%d %d %d\n", imageTraitee[0], imageTraitee[1], imageTraitee[2], imageTraitee[3], imageTraitee[4], imageTraitee[5], imageTraitee[6], imageTraitee[7], imageTraitee[8], imageTraitee[9], imageTraitee[10], imageTraitee[11]); // Enregistrement de l'image traitée en BMP if(gpu==1) { err = SOIL_save_image("GPUProcessedImage.bmp", SOIL_SAVE_TYPE_BMP, width, height, 1, imageTraitee); TimeTotGPU = TimeGPU; TimeKernGPU = TimeKernel; } else { err = SOIL_save_image("CPUProcessedImage.bmp", SOIL_SAVE_TYPE_BMP, width, height, 1, imageTraitee); TimeTotCPU = TimeGPU; TimeKernCPU = TimeKernel; } // Shutdown and cleanup clReleaseMemObject(ImageInput); clReleaseMemObject(ImageOutput); clReleaseProgram(program); clReleaseKernel(kernel); clReleaseCommandQueue(commands); clReleaseContext(context); } printf("Temps de réolution du programme sur GPU: %d [usec]\n", TimeTotGPU); printf("Temps de réolution du programme sur CPU: %d [usec]\n\n", TimeTotCPU); printf("La résulotion du programme sur GPU est environ %d fois plus rapide que sur CPU\n\n", TimeTotCPU / TimeTotGPU); printf("Temps de réolution du noyau sur GPU: %d [usec]\n", TimeKernGPU); printf("Temps de réolution du noyau sur CPU: %d [usec]\n\n", TimeKernCPU); printf("La résulotion du noyau sur GPU est environ %d fois plus rapide que sur CPU\n\n", TimeKernCPU / TimeKernGPU); free(monImage); free(imageTraitee); return 0; } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////Annexe functions////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// char * LoadFile2txt (const char *File) { FILE * pFile; long lSize; size_t result; char * TXTBuffer; pFile = fopen (File, "r"); if (pFile==NULL) { printf("Fct LoadFile2txt: File error"); } // obtain file size: fseek (pFile , 0 , SEEK_END); lSize = ftell (pFile); rewind (pFile); // allocate memory to contain the whole file: TXTBuffer = (char*) malloc (sizeof(char)*lSize); if (TXTBuffer == NULL) { printf("Fct LoadFile2txt: Memory error"); } // copy the file into the buffer: result = fread (TXTBuffer,1,lSize,pFile); if (result != lSize) { printf("Fct LoadFile2txt: Reading error"); } // terminate fclose (pFile); return TXTBuffer; }