
Universität Bremen
Fachbereich 3

Hard Real-Time Linux
for Off-The-Shelf Multicore Architectures

Dissertation zur Erlangung des Grades eines Doktors der
Ingenieurwissenschaften – Dr.-Ing. –

vorgelegt von Dirk Radder
im Fachbereich 3 der Universität Bremen
am 19. Mai 2015

Datum des Promotionskolloquiums: 10.11.2015

Gutachter: Prof. Dr. Jan Peleska (Universität Bremen)

Prof. Dr.-Ing. Görschwin Fey (Universität Bremen)

Zusammenfassung

In dieser Dissertation werden die Forschungsergebnisse bezüglich der Entwicklung einer
Echtzeiterweiterung für das Linux Betriebssystem vorgestellt. Die Arbeit beschreibt
eine vollständige Erweiterung das Kernels, welche hartes Echtzeitverhalten auf einer
64 Bit x86 Architektur ermöglicht.

Im ersten Teil dieser Arbeit werden Echtzeit-Systeme kategorisiert und Konzepte
von Echtzeit-Betriebssystemen eingeführt. Im Weiteren werden zahlreiche bekannte
Echtzeit-Betriebssysteme betrachtet. QNX Neutrino, RT_PREEMPT Linux Patch sowie
HLRT Linux Patch werden detailiert analysiert und deren Kernkonzepte ausführlich
diskutiert. Darüber hinaus wird eine Test-Suite erarbeitet, mit der aussagekrätige
Benchmarks der analysierten Systeme erstellt werden. Die Systeme werden anhand
dieser Benchmarks evaluiert und mit der in dieser Arbeit entwickelten Echtzeit-
Erweiterung verglichen.

Anhand der vorausgegangenen Analysen der genannten Systeme wird ein Katalog
von Anforderungen definiert, den die entwickelte Echtzeit-Erweiterung umsetzen wird.
Basierend auf diesem Anforderungs-Katalog und den identifizierten Kernkonzepten der
analysierten Systeme wird der Entwurf der Echtzeit-Erweiterung erarbeitet und deren
konkrete Implementierung dargestellt. Abschließend werden die Benchmarks aller
analysierten Systeme, einschließlich der erarbeiteten Echtzeit-Erweiterung, miteinander
verglichen und bewertet.

iii

Abstract

This document describes the research results that were obtained from the development
of a real-time extension for the Linux operating system. The paper describes a full
extension of the kernel, which enables hard real-time performance on a 64-bit x86
architecture.

In the first part of this study, real-time systems are categorized and concepts of
real-time operating systems are introduced to the reader. In addition, numerous
well-known real-time operating systems are considered. QNX Neutrino, RT_PREEMPT
Linux Patch and HLRT Linux Patch are analyzed in detail. The core concepts of
these systems are shown and discussed. Furthermore, a test suite is developed, which
is used to obtain expressive benchmarks from the systems that were analyzed before.
The systems are evaluated on the basis of these benchmarks and compared to the
real-time extension which is developed in this work.

A requirements catalogue is defined based on the analysis of the stated operating
systems. The design of a real-time extension is developed based on the specification
catalogue and the identified core concepts. Furthermore, the concrete implementation
of the developed real-time extension is presented in detail. Finally, the benchmarks of
all analyzed systems, including the developed real-time extension, are compared to
each other and evaluated.

v

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Objectives . 2
1.2 Main Contributions . 2
1.3 Related Work . 3
1.4 Structure of this Document . 6

I Background and Components 9

2 Concepts of Real-Time Systems 11
2.1 Definition and Classification of Real-Time Systems 11

2.1.1 Proprietary versus Open . 12
2.1.2 Centralized versus Distributed 13
2.1.3 Fail-Safe versus Fail-Operational 13
2.1.4 Hard versus Soft Real-Time . 14
2.1.5 Event-Triggered versus Time-Triggered 15

2.2 Requirements of Real-Time Systems 16
2.2.1 Functional Requirements . 17
2.2.2 Temporal Requirements . 17
2.2.3 Dependability Requirements . 18
2.2.4 Architectural Requirements . 18

2.3 Hardware for Real-Time Systems . 19
2.4 x86 Instruction Set Architecture . 20

2.4.1 General Remarks and Design 20
2.4.2 Hyper-Threading Technology 21
2.4.3 APIC Architecture . 21
2.4.4 Time Stamp Counter . 22
2.4.5 Problems with Hard Real-Time on the x86 Architecture 22

3 Real-Time Operating Systems 23
3.1 Task Management . 23

vii

Contents

3.1.1 Task States . 24
3.1.2 Task Hierarchy . 24
3.1.3 Task Types . 25

3.2 Scheduling . 25
3.2.1 Clock Driven Scheduling Strategies 26
3.2.2 Event Driven Scheduling Strategies 26

3.2.2.1 Earliest-Deadline-First Scheduling 26
3.2.2.2 Rate-Monotonic Scheduling 26

3.2.3 Hybrid Scheduling Strategies 27
3.2.3.1 First-In-First-Out Scheduling 27
3.2.3.2 Round-Robin Scheduling 28

3.3 Partitioning . 28
3.4 Main System Services . 29
3.5 POSIX Standard . 29

3.5.1 Real-Time System Profiles . 30
3.6 Real-Time and Linux . 31

3.6.1 Real-Time Kernel . 31
3.6.2 Kernel Preemption . 32
3.6.3 Resource Reservation . 32

II Real-Time Operating Systems Analysis 33

4 Overview of Available Real-Time Operating Systems 35
4.1 Atomthreads . 39

4.1.1 Structure of the Kernel . 39
4.1.2 CPU Architecture Ports . 41

4.2 eCos . 41
4.2.1 Design . 42

4.3 VxWorks . 42
4.3.1 Protection Domains Architecture 43

4.4 μC/OS-III . 43
4.4.1 Design . 44

4.5 MontaVistaLinux . 44
4.6 ThreadX . 44

4.6.1 Pico Kernel . 45
4.7 RTLinux . 45

4.7.1 Structure of the Kernel . 45
4.8 QNX, HLRT and RT-Preempt . 46

5 Evaluating (POSIX) Real-Time Operating Systems 49
5.1 Unconsidered Aspects . 49
5.2 Identify Technical Values . 50

5.2.1 Benchmark Methodology . 51

viii

Contents

5.3 Case Scenarios for Real-Time Systems 53
5.3.1 Development Board . 54

5.4 Benchmark Test Framework . 55
5.4.1 Measurement Details . 55
5.4.2 Operating System Overhead . 57
5.4.3 Test Design . 58

5.4.3.1 Task Period Accuracy 59
5.4.3.2 Task Change Times 60
5.4.3.3 Task Creation Time 62
5.4.3.4 Interrupt Times . 63

6 Case Study 1: RT-Preempt Patch 67
6.1 Background and Overview . 67
6.2 Preemptable In-Kernel Locking Primitives 68

6.2.1 Priority Inheritance for In-Kernel Locking Primitives 70
6.3 Interrupt Handlers as Kernel Threads 72
6.4 Real-Time Application Programming 75
6.5 Benchmarking . 75

6.5.1 Task Period Tests . 76
6.5.2 Task Switch Tests . 79
6.5.3 Task Creation Test . 84
6.5.4 Interrupt Tests . 86

6.6 Summary . 89

7 Case Study 2: HaRTLinC 91
7.1 Background and Overview . 91
7.2 CPU Reservation . 92

7.2.1 The SCHED_HLRT Scheduling Policy 92
7.2.2 Interrupt Routing . 96
7.2.3 Necessary Adjustments . 97

7.3 Time-Triggered Architecture . 98
7.4 Real-Time Application Programming 99
7.5 Benchmarking . 100

7.5.1 Task Period Tests . 100
7.5.2 Interrupt Tests . 103

7.6 Summary . 105

8 Case Study 3: QNX Neutrino 107
8.1 Background and Overview . 107
8.2 Microkernel Architecture . 107

8.2.1 Process Management . 108
8.2.2 Interrupt Handling . 110
8.2.3 Message Passing . 110

8.3 Adaptive Partitioning Scheduler . 111

ix

Contents

8.4 Benchmarking . 114
8.4.1 Task Period Tests . 115
8.4.2 Task Switch Tests . 117
8.4.3 Task Creation Test . 121
8.4.4 Interrupt Tests . 121

8.5 Summary . 124

III A Hard Real-Time Linux Operating System 125

9 Requirements Discussion 127
9.1 Analysis . 130
9.2 Coverage . 131

10 Hard Real-Time Linux System Design 133
10.1 Overview . 133
10.2 CPU Reservation . 134

10.2.1 Interrupt Routing . 135
10.2.2 CPU Profiles . 135
10.2.3 Housekeeping . 135

10.3 Partitioning . 136
10.3.1 Scheduling Groups . 136
10.3.2 Group Cycles . 138
10.3.3 Threaded Interrupt Handling 139
10.3.4 System-Call Redirection . 139

10.4 Task Management . 140
10.4.1 Events . 140

10.4.1.1 Synchronisation . 140
10.4.1.2 Deadlines . 140

10.4.2 Kernel Preemption . 141
10.4.2.1 System-Call Handler Threads 141
10.4.2.2 Preemptible Critical Sections 142

10.4.3 Scheduling in Static Groups . 143
10.4.4 CPU Budget Based Scheduling 145

11 Description of the HRT Linux Implementation 147
11.1 Global Objects and Data Types . 147
11.2 Management of Memory Objects . 149

11.2.1 Id and Key Pool . 150
11.2.2 Entity System-Call Multiplexer 151

11.3 Subsystems . 151
11.3.1 Time Base and Clock Sources 152
11.3.2 Timer and Interrupts . 152
11.3.3 Events . 153

x

Contents

11.4 CPU Reservation . 154
11.4.1 Per CPU Idle Task . 155
11.4.2 CPU States . 156
11.4.3 CPU Takeover . 157
11.4.4 Necessary Adjustments . 159

11.5 Scheduling Class (SCHED_HRTL) . 163
11.5.1 Linux Scheduler Integration . 163
11.5.2 Adding Tasks to SCHED_HRTL 164
11.5.3 Necessary Adjustments . 165

11.6 Static Scheduling Plan . 166
11.6.1 Cycles . 166
11.6.2 Partition Management . 168
11.6.3 Interrupt Handlers . 168
11.6.4 Interface for Scheduler Modules 169
11.6.5 Deadline Events . 171

11.7 Balancing Dynamic Partitions . 172
11.7.1 CPU Usage Measurement . 172
11.7.2 Group Distribution . 173
11.7.3 SCHED_HRTL Integration . 174

11.8 System-Call Handler Threads . 175
11.8.1 System-Call Redirection . 176
11.8.2 Work Package Scheduling . 177
11.8.3 Spin-Lock Replacement . 180
11.8.4 Necessary Adjustments . 181

11.9 Real-Time Application Programming 182
11.9.1 User-Space Interface . 182

11.9.1.1 Library . 183
11.9.2 Benchmarking . 193

11.9.2.1 Task Period Tests . 193
11.9.2.2 Task Switch Tests . 196
11.9.2.3 Task Creation Test . 199
11.9.2.4 Interrupt Tests . 201

IV Evaluation 205

12 Benchmark Results Comparison 207

13 Conclusion and Outlook 211

Bibliography 213

xi

List of Figures

1.1 Overview of the thesis . 7

2.1 Real-time system . 12
2.2 Linking interface . 13
2.3 Timing requirements of jobs . 14
2.4 APIC architecture . 21

3.1 Internal and external view on processes 23
3.2 Preemptive tasks . 24
3.3 Real-time kernel design . 31

4.1 Typical memory footprints of real-time operating systems 38
4.2 VxWorks protection domains architecture 43
4.3 RTLinux kernel design . 46

5.1 Task switch latency . 51
5.2 Interrupt times . 52
5.3 Interrupt to task latency . 53
5.4 Benchmark test behaviour . 58
5.5 Periodic task benchmark test . 59
5.6 Task switch/preemption benchmark test 61
5.7 Task creation benchmark test . 62
5.8 Interrupt benchmark test . 63
5.9 Interrupt latency benchmark test . 64
5.10 Interrupt dispatch latency benchmark test 64
5.11 Interrupt to task latency benchmark test 65

6.1 Priority inversion . 71
6.2 RT-Preempt scheduling hierarchy . 73

8.1 QNX Neutrino adaptive partitioning 112

9.1 Real-time operating system requirements 130

10.1 Hard real-time Linux scheduling groups (Example 1) 134
10.2 FIFO scheduling in Example 1 . 143
10.3 RM scheduling in Example 1 . 144

xiii

List of Figures

10.4 Available CPU time (Example 2) . 146

xiv

List of Tables

2.1 Characteristics of real-time systems . 12
2.2 Hard real-time versus soft real-time . 15
2.3 Requirements of real-time systems . 16

4.1 Real-time operating systems overview 37
4.2 Real-time operating systems hardware characteristics 40
4.3 Real-time operating systems technical characteristics 40

5.1 Development board specification . 54

6.1 Benchmark test results [μs]: RT-Preempt period task (500μs) 78
6.2 Benchmark test results [μs]: Linux 3.4.104 period task (500μs) 78
6.3 Benchmark test results [μs]: RT-Preempt period task (10ms) 78
6.4 Benchmark test results [μs]: Linux 3.4.104 period task (10ms) 78
6.5 Benchmark test results [μs]: RT-Preempt period task (100ms) 79
6.6 Benchmark test results [μs]: Linux 3.4.104 period task (100ms) 79
6.7 Benchmark test results [μs]: RT-Preempt period task (1sec) 79
6.8 Benchmark test results [μs]: Linux 3.4.104 period task (1sec) 79
6.9 Benchmark test results [μs]: RT-Preempt preempt task (signal) 81
6.10 Benchmark test results [μs]: Linux 3.4.104 preempt task (signal) . . . 82
6.11 Benchmark test results [μs]: RT-Preempt switch task (2 tasks) 83
6.12 Benchmark test results [μs]: Linux 3.4.104 switch task (2 tasks) 84
6.13 Benchmark test results [μs]: RT-Preempt switch task (16 tasks) 84
6.14 Benchmark test results [μs]: Linux 3.4.104 switch task (16 tasks) . . . 84
6.15 Benchmark test results [μs]: RT-Preempt switch task (128 tasks) . . . 84
6.16 Benchmark test results [μs]: Linux 3.4.104 switch task (128 tasks) . . 84
6.17 Benchmark test results [μs]: RT-Preempt switch task (512 tasks) . . . 84
6.18 Benchmark test results [μs]: Linux 3.4.104 switch task (512 tasks) . . 84
6.19 Benchmark test results [μs]: RT-Preempt task creation 85
6.20 Benchmark test results [μs]: Linux 3.4.104 task creation 86
6.21 Benchmark test results [μs]: RT-Preempt interrupt latency (ISR) . . . 88
6.22 Benchmark test results [μs]: Linux 3.4.104 interrupt latency (ISR) . . 88
6.23 Benchmark test results [μs]: RT-Preempt interrupt latency (dispatch) 89
6.24 Benchmark test results [μs]: Linux 3.4.104 interrupt latency (dispatch) 89
6.25 Benchmark test results [μs]: RT-Preempt interrupt latency (SLIH) . . 89

xv

List of Tables

6.26 Benchmark test results [μs]: Linux 3.4.104 interrupt latency (SLIH) . 89

7.1 Benchmark test results [μs]: HLRT period task (500μs) 102
7.2 Benchmark test results [μs]: HLRT period task (10ms) 102
7.3 Benchmark test results [μs]: Linux 2.6.27 period task (10ms) 102
7.4 Benchmark test results [μs]: HLRT period task (100ms) 102
7.5 Benchmark test results [μs]: Linux 2.6.27 period task (100ms) 103
7.6 Benchmark test results [μs]: HLRT period task (1sec) 103
7.7 Benchmark test results [μs]: Linux 2.6.27 period task (1sec) 103
7.8 Benchmark test results [μs]: HLRT interrupt latency (ISR) 104
7.9 Benchmark test results [μs]: Linux 2.6.27 interrupt latency (ISR) . . . 104
7.10 Benchmark test results [μs]: HLRT interrupt latency (dispatch) 105
7.11 Benchmark test results [μs]: Linux 2.6.27 interrupt latency (dispatch) 105

8.1 Benchmark test results [μs]: QNX period task (500μs) 117
8.2 Benchmark test results [μs]: QNX period task (10ms) 117
8.3 Benchmark test results [μs]: QNX period task (100ms) 117
8.4 Benchmark test results [μs]: QNX period task (1sec) 117
8.5 Benchmark test results [μs]: QNX preempt task (event) 120
8.6 Benchmark test results [μs]: QNX preempt task (signal) 120
8.7 Benchmark test results [μs]: QNX switch task (2 tasks) 121
8.8 Benchmark test results [μs]: QNX switch task (16 tasks) 121
8.9 Benchmark test results [μs]: QNX switch task (128 tasks) 121
8.10 Benchmark test results [μs]: QNX switch task (512 tasks) 121
8.11 Benchmark test results [μs]: QNX task creation 122
8.12 Benchmark test results [μs]: QNX interrupt latency (ISR) 122
8.13 Benchmark test results [μs]: QNX interrupt latency (dispatch) 123
8.14 Benchmark test results [μs]: QNX interrupt latency (SLIH) 123

9.1 Listing of determined requirements . 129
9.2 Requirements coverage . 131

10.1 RM scheduling in Example 1 . 145
10.2 RM scheduling in Example 1 with unworkable task set 145

11.1 CPU states . 157
11.2 Listing of HRTL systemcalls . 183
11.3 Benchmark test results [μs]: HRTL period task (500μs) 194
11.4 Benchmark test results [μs]: Linux 3.5.7 period task (500μs) 194
11.5 Benchmark test results [μs]: HRTL period task (10ms) 195
11.6 Benchmark test results [μs]: Linux 3.5.7 period task (10ms) 195
11.7 Benchmark test results [μs]: HRTL period task (100ms) 195
11.8 Benchmark test results [μs]: Linux 3.5.7 period task (100ms) 195
11.9 Benchmark test results [μs]: HRTL period task (1sec) 195
11.10Benchmark test results [μs]: Linux 3.5.7 period task (1sec) 196

xvi

List of Tables

11.11Benchmark test results [μs]: HRTL preempt task (signal) 197
11.12Benchmark test results [μs]: Linux 3.5.7 preempt task (signal) 197
11.13Benchmark test results [μs]: HRTL preempt task (event) 198
11.14Benchmark test results [μs]: HRTL switch task (2 tasks) 199
11.15Benchmark test results [μs]: Linux 3.5.7 switch task (2 tasks) 199
11.16Benchmark test results [μs]: HRTL switch task (16 tasks) 199
11.17Benchmark test results [μs]: Linux 3.5.7 switch task (16 tasks) 199
11.18Benchmark test results [μs]: HRTL switch task (128 tasks) 199
11.19Benchmark test results [μs]: Linux 3.5.7 switch task (128 tasks) 199
11.20Benchmark test results [μs]: HRTL switch task (512 tasks) 199
11.21Benchmark test results [μs]: Linux 3.5.7 switch task (512 tasks) 200
11.22Benchmark test results [μs]: HRTL task creation 201
11.23Benchmark test results [μs]: Linux 3.5.7 task creation 201
11.24Benchmark test results [μs]: HRTL interrupt latency (ISR) 203
11.25Benchmark test results [μs]: Linux 3.5.7 interrupt latency (ISR) 203
11.26Benchmark test results [μs]: HRTL interrupt latency (dispatch) 204
11.27Benchmark test results [μs]: Linux 3.5.7 interrupt latency (dispatch) . 204
11.28Benchmark test results [μs]: HRTL interrupt latency (SLIH) 204
11.29Benchmark test results [μs]: Linux 3.5.7 interrupt latency (SLIH) . . . 204

12.1 Period benchmark results overview [μs] 207
12.2 Process creation benchmark results overview [μs] 208
12.3 Preemption benchmark results overview [μs] 209
12.4 Task switch benchmark results overview [μs] 209
12.5 HRTL task switch results without caching 210
12.6 Interrupt benchmark results overview [μs] 210

xvii

1
Introduction

Embedded systems are present in a wide variety of electronic products. In the day-to-
day life we are habituated to use them easily. Many of these systems must continually
react to changes in the system’s environment and must compute certain results at a
specific time without delay. For some systems, there is no value to a certain result if
it is not available at a defined time. In some cases, the effects of a late computation
may be catastrophic. A flight control system presents a good example.

Most embedded real-time systems are designed to have very low memory footprint
and high modularity. They are developed to solve a clearly structured task in a
unique situation. In order to test the conformance of embedded real-time systems to
their specified requirements a test system must be able to stimulate inputs within the
required time bounds. In contrast to embedded real-time applications like the flight
controller that served as a safety-critical example, some applications require a more
flexible computer system with strict real-time constraints. For instance, high latency
will ruin a good performance for an audio recording system.

In recent years, the Linux operating system has raised some interest in both
industrial and private spheres. It was initially designed around fairness and good
average performance and provides only soft real-time capabilities. Various specialised
hardware and software solutions are available for systems with stricter real-time
constraints. However, the costs for such real-time computer systems can be very high.
Using off-the-shelf computer hardware in combination with Linux is a much more
cost-effective approach.

The Linux kernel design conflicts with real-time requirements in many aspects
and lacks some features associated with traditional real-time operating systems. It
is a monolithic kernel [BC05, Chap. 1], which means that device drivers, scheduler
and operating system services reside side by side in what is referred to as kernel
space. A program that requests an operating system service can generally not be
interrupted before it has finished the interaction. Furthermore, interrupt handlers
can cause latency on high priority task execution. Thus, a deterministic priority
scheduling of tasks is not provided. As a consequence, the kernel needs to be modified
in order to support hard real-time applications. Several extensions pursuing different
approaches already exist. They all introduce different real-time features to Linux, but
none of them can be said to successfully transform Linux into a full modern real-time

1

Chapter 1. Introduction

operating system.
This first chapter introduces the objectives of this dissertation. Furthermore, the

main contributions are explained in detail. The chapter concludes with an overview
of the structure of this document.

1.1. Objectives

Two distinctive approaches to add real-time capabilities to Linux can be identified.
One uses a dual kernel design where Linux runs at a task on top of a real-time kernel
[BM14, Sect. 18.4], while the other improves the Linux kernel itself so that it fulfills
real-time requirements [YMBYG08, Chap. 12]. In a dual kernel design, tasks running
in the real-time kernel can make only limited use of existing system services in Linux.
Drivers and system services must be created specifically for the real-time kernel. On
the other hand, known extensions that introduce real-time capabilities to Linux only
deal with some aspects of real-time. A fully featured real-time operating system is
not provided by those extensions.1

The aim of this work is to develop an extension for the Linux operating system that
adds real-time capabilities and extends the kernel with new features. The design of
this extension is based on investigations of already existing approaches that extend
Linux with real-time features as well as investigations of traditional real-time operating
systems. As aforementioned in the introduction to this chapter, the resultant real-
time operating system will be implemented for off-the-shelf computer hardware and
represents an alternative to commercial software solutions.

1.2. Main Contributions

The following main contributions are presented in this dissertation:

→ detailed analysis of real-time operating systems with main focus on Linux real-time
extensions

→ design and implementation of a completely new approach to enhance Linux with
real-time capabilities

→ development of a benchmark test suite for POSIX like real-time operating systems

As a first step, it was necessary to identify the features that are required for
real-time operating systems. These requirements derive from the investigations of
traditional real-time operating systems like QNX Neutrino (see Chapter 8) as well as
from real-time Linux extensions like the RT_PREEMPT-Patch (see Chapter 6) and the
HLRT-Patch (see Chapter 7).

1Chapter 6 and Chapter 7 discuss two Linux real-time extensions. An overview of supported
real-time features is given in Chapter 9.

2

1.3. Related Work

Based on the identified requirements, a system design was developed that extends
the Linux kernel with real-time capabilities. The extension turns Linux into a fully
preemptible operating system and introduces partitioning concepts in different variants
to the kernel. Balancing system-calls between partitions allow critical sections to be
preempted inside the kernel and provide a highly flexible and low latency scheduling
of tasks and partitions.

In order to evaluate the implementation of the new extension, a method that allows
a reliable comparison to other operating systems was developed. The benchmark test
suite was applied to the new extension and the other investigated real-time solutions.

1.3. Related Work

The design and implementation of real-time systems poses special requirements to both,
the hardware the operating system is executed on and the software implementation
of the operating system itself. Often, dedicated hardware is designed to guarantee
real-time properties of the system directly on the hardware level.2 An example of
such system from the aerospace domain is the Integrated Modular Avionics (IMA)
architecture [Efk14]. The IMA concept includes an assembly of common hardware
modules capable of supporting numerous applications of differing criticality levels.

Our work, however, is concerned with the design and implementation of real-time
capable operating systems solely on the level of software. We base our implementation
on standard x86 architectures, and extend a Linux-based operating system kernel so
that it delivers real-time capabilities. The fundamentals of real-time system design have
been discussed in [Kop97, Liu00, BW09]. In principle, the system architecture can be
classified into either time- or event-triggered, a classification that depends on the types
of internal events which cause some action of the system. In event-triggered systems,
all activities are started whenever a relevant event occurs, which is classically realized
using interrupts [Kop97, Sect. 1.5.5]. By way of contrast, in a time-triggered system,
all actions are initiated by the progression of time [Kop97, Sect. 1.5.5]. Our own real-
time extension of the Linux kernel implements a time-triggered architecture [Kop97,
Chap. 14] [KB03].

The evaluation of real-time operating systems has been discussed extensively in
the literature. Measuring the execution time and performance in real-time operating
systems is described in [Ste02]. The paper presents a variety of techniques, which
mostly aim at measuring the timing behavior of applications within a real-time
environment. However, in the context of our work, measuring the operating system
overhead is the interesting part. Two different kinds of operating system overhead are
introduced in [Ste02, Sect. 4.3]: context switch time and interrupt latency. Context
switching from one task to another is measured by two (or more) alternating tasks
on different priority levels. Each context switch triggers an externel logic analyzer.

2A comparison of commercial off-the-shelf and special-to-purpose platforms is given in [Ott06, Sect.
1.5].

3

Chapter 1. Introduction

Measuring the overhead of an interrupt handler is done in a similar way, where an
interrupt handler toggles an input bit to the logic analyzer.

In this thesis we develop our own test suite for benchmarking real-time operating
systems based on the Rhealstone method [KP89]. For our test suite we refine the two
methods from [Ste02] (task switching and interrupt latency) by adding benchmarks for
the task preemption latency and the interrupt dispatch latency. The latter benchmark
has been discussed in [RB10, Sect. 3.2]. The authors identify several components and
show that the dispatch latency is composed from the runtimes of these components.
In order to measure all latency sources on the interrupt dispatch path, an instru-
mented kernel is needed. However, our benchmark framework is designed to optain
benchmark results from different operating systems without affecting the operating
system kernels, and hence the interrupt dispatch latency measurement is not divided
into sub-components.

[KP89, Ste02] describe a set of benchmark programs, on which our test suite is
based. Most notably, we have integrated benchmarks for task switch latency, task
preemption latency, interrupt latency, interrupt dispatch latency, and interrupt to task
latency into our benchmark framework. Additionally, we have added benchmarks for
process creation and accuracy of task periods (compare Section 5.2.1). We defer the
discussion of the details of our benchmark test suite to Section 5.4.3. Technical aspects
of how to retrieve precise and reliable time values are discussed in Section 5.4.1. The
time accounting is based on the time stamp counter (TSC) register. [Pao10] describes
the technique that is used in this thesis to measure the clock cycles from the TSC in
a Linux environment running on a x86 architecture.

Our extension of the Linux kernel with real-time capabilities presented in this
thesis is based on existing work that targets partitioning, scheduling, preemption and
techniques for system-call distribution. In the following, we discuss the relation of the
state-of-the-art with respect to these techniques to our work. These issues have, at
least to some extent, been addressed by existing implementations of real-time operation
systems. Examples of such systems are the RT-Preempt Linux extension [MG] and
QNX [Bla]. We defer the discussion of the details of these systems and how their
approach deviates from ours to Chapter 6 and Chapter 8.

Partitioning

The term partitioning refers to techniques which assign shared resources (such as
computation time) of the system to tasks in a predictable way. Partitioning is thus
a core aspect for multi-task real-time operating systems. One important technique,
which is implemented in real-time operating systems such as QNX [JCLC06], is
referred to as adaptive partitioning scheduling. Using this technique, partitioning may
be adapted at runtime as long as the adaptation does not prevent processes from
meeting their deadlines. Each partition has an fixed amount of available computation
time allotted. A task that overruns the partition’s time budget can only affect other
tasks in the same partition [DB11, Chap. 5]. The approach can thus be seen as

4

1.3. Related Work

opposed to traditional partitioning that uses static assignments of time slots (as
implemented for operating systems such as PikeOS [SYS] or RT-Mach [TNR90]). The
paper [MFL+09] describes a implementation of a similar idea for Minix 3 [HBG+06].
In their approach, a partition can request additional CPU time from a so-called virtual
resource server in order to meet its deadlines [MFL+09, Sect. 3.1]. In Section 10.3.1,
we describe partitioning by dynamic scheduling groups, which is based on similar ideas.

According to [RTC92], an implementation of an partitioning operating system as-
signs static time slots to its software partitions. Each partition receives a fixed amount
of CPU time. The operating system’s scheduler ensures that no partition can spend
CPU time allotted to another partition. [KW07] describes the concepts of how time
partitioning can be realized through a fixed-cyclic time-slice scheduler, which allocates
periods of time to each partition. The paper investigates the partitioning strategies
of PikeOS [SYS] where scheduling decisions are made according to a pre-configured
static schedule plan. We will describe static scheduling groups in Section 10.3.1, which
are based on these concepts.

A comparison of different operating systems that provide partitioning is given
in [LSOH07].

Task Scheduling

Based on the partitioning concepts as introduced above, various priority and deadline
orientated task scheduling strategies are implemented for our real-time operating sys-
tem. The task scheduling for partitions is realised by scheduling modules. A scheduling
module can be implemented as a Linux loadable module and can be registered and
deregistered at system runtime. Each (static) partition has to be connected with
one task scheduling module. [GAGB01] introduces the concept of flexible scheduling
modules for Linux like operating system kernels. The implementation of a scheduling
algorithm should possibly be independent and handle only the scheduling behavior.
The paper presents the details of a soft and hard real-time kernel (S.Ha.R.K.) which
was purposely designed to support the implementation and testing of new scheduling
algorithms. In Section 11.6.4, we describe scheduling modules for our operating system.
The interface for these modules is based on similar ideas.

Current literature is rich in techniques and algorithms for real-time schedul-
ing [dMC00]. Deadline orientated task scheduling like rate-monotonic scheduling
(see Section 3.2.2.2) is discussed in detail in [LL73] and [AB98]. We will describe
the details of a rate-monotonic scheduling module for our real-time operating sys-
tem in Section 10.4.3. [FCTS09] presents an enhancement of the Linux scheduler
through the implementation of another deadline orientated scheduling strategy. The
paper describes the adaptations of the Linux kernel that are necessary to support
earliest-deadline-first scheduling (see Section 3.2.2.1). The description of the Linux
modular scheduling framework [FCTS09, Chap. 3] and [Mol07] contributes to our
implementation of an interface for scheduling modules (see Section 11.6.4).

A priority orientated scheduling module is discussed in Section 10.4.3. It is based

5

Chapter 1. Introduction

on First-In-First-Out (FIFO) and Round-Robin (RR) scheduling methods. Details on
these scheduling strategies can be found in [Tan08, Sect. 2.4] and [Noe05, Sect. 9.2].

Preemption and System-Calls

In monolithic operating system kernels, system-calls are a major obstacle when it
comes to providing real-time guarantees because they often exhibit unpredictable
timing behavior. For example, a system-call may be used to read inputs from a
device driver, the exact timing of which is unknown. Furthermore, the access to the
device may block access for other tasks; the call can thus be seen as a critical section.
The notion of real-time thus entails that system-calls, and thereby the operating
system kernel, have to be preemptable. The state-of-the-art solution to this problem
is implemented by the RT-Preempt Linux extension [DW05], the key idea of which is
to secure critical sections using mutexes instead of spin-locks. The RT-Preempt Linux
extension thereby avoids busy waiting and allows preemption within critical sections in
the kernel. However, this strategy suffers from priority inversion [LR80, Sect. 4], where
the execution of a high priority task is delayed by a medium priority task [BMS93].
This is indeed a problem with most operating system kernels that implement some form
of priority-based task model [MT92]. We will discuss this situation in Section 6.2.1
and investigate how the problem is solved for the RT-Preempt Linux extension.

Our work, in contrast, allows to redirect system-calls from tasks to so-called system-
call handler threads. Whenever such a call is invoked, its execution is redirected to
the handler, which introduces a form of asynchronous execution of system-calls (even
though the caller still has to wait for termination of the respective system-call). Such
handler threads are preemptible even in most critical sections. Similar ideas can be
found in the area of secure system design, where system-call interpositioning [Gar03]
is frequently used in sandbox environments. For example, Ostia [GPR04] introduces
a delegating architecture, which allows to delegate calls to distinguished handlers. We
defer the discussion of the details of system-call handler threads and how the problem
of priority inversion is treated to Section 10.4.2.1 and Section 11.8.

1.4. Structure of this Document

This document is structured into four parts as illustrated in Figure 1.1. The figure
also presents the overall research process of this dissertation and shows dependencies
between sections.

Part I describes real-time computer systems and defines the role of real-time
operating systems. Basic terms and concepts are introduced which are used in later
chapters. This includes a definition of the term off-the-shelf architecture. General
implementation details on the Linux kernel are not discussed in this part.

In Part II several real-time operating systems are discussed. This part provides an
in-depth examination of three systems. A method for evaluating operating systems is
developed and applied to the analysed systems.

6

1.4. Structure of this Document

Background and Components [Part I]

Chapter 2
Concepts of Real-Time Systems

Chapter 3
Real-Time Operating Systems

Real-Time Operating Systems Analysis [Part II]

Chapter 5
Evaluating Real-Time Operating Systems

Chapter 4
Overview of Real-Time Operating Systems

Chapter 6
RT-Preempt

Chapter 7
HaRTLinC

Chapter 8
QNX Neutrino

Section 6.5
Benchmarking

Section 7.5
Benchmarking

Section 8.4
Benchmarking

A Hard Real-Time Linux Operating System [Part III]

Chapter 9
Requirements Discussion

Chapter 10
Hard Real-Time Linux System Design

Chapter 11
Description of the HRT Linux Implementation

Evaluation [Part IV]

Chapter 12
Benchmark Results Comparison

Figure 1.1.: Overview of the thesis

Part III identifies and summarizes requirements from the previous system analyses.
Based on this requirements discussion, the design for a new real-time Linux exten-
sion is developed. The last chapter in this part describes technical details on the
implementation of the design.

Part IV compares the developed real-time extension to other systems and gives a
comprehensive conclusion of the results elaborated in this thesis.

7

Part I.
Background and Components

9

2
Concepts of Real-Time Systems

This chapter introduces real-time systems to the reader and explains the concepts and
classifications of such systems. Later in this thesis we will concentrate on computer
systems inside a larger system, the real-time system, and will isolate the part of a
real-time operating system from the real-time computer-system. As an introduction
we will start with a view at the whole real-time system. According to Kopetz [Kop97,
Sect. 1.1], it is reasonable to separate a real-time system into three distinguished
sub-systems called clusters:

• Operator

• Real-time computer system

• Controlled object

The operator and the controlled object are regarded as the environment of the
real-time computer system. The environment and the computer system are connected
with two interfaces. The computer system is influenced by the operator via the
man-machine interface and must react to stimuli from the controlled object via the
instrumentation interface. The real-time computer system itself can be divided into
a real-time operating system and one or more real-time jobs respectively real-time
tasks1 as shown in Figure 2.1.

In the following sections we will concentrate on real-time computer systems. The
area of the environment of real-time computer systems is not considered. Information
about the man-machine interface respectively the instrumentation interface, the
operator and the controlled object can be found in [Kop97, Sect. 1.2]. For the purpose
of simplicity real-time computer systems are referred to as real-time systems in the
following chapters. Hardware issues of real-time systems are discussed in Section 2.3
and Section 2.4.

2.1. Definition and Classification of Real-Time Systems

A real-time system is an information processing system which has to respond to stimuli
within a finite and specified time. This basically means that results of computations

1A technical definition of the term task is given in Section 3.1.

11

Chapter 2. Concepts of Real-Time Systems

Operator

Real-Time Computer System

Real-Time Operating System

Real-Time Task

Controlled Object

Man-Machine Interface

Instrumentation Interface

Figure 2.1.: Real-time system

not only must be correct but also be present at a given time. This point in time is
typically referred to as the deadline. A computation can be deemed to have failed if it
is not completed before the deadline for this result has lapsed. A (hard) real-time
deadline must be met, regardless of system load.2

In the following sections real-time systems are considered from different perspectives.
Several properties can be assigned to each perspective. The first perspective (general)
describes a common view of the system. The second perspective (application) includes
characteristics of the system depending on the application (outside the computer
system). The last perspective (design and implementation) depends on the design and
implementation of the system (inside the computer system). Additional information
on this topic can be found in [FGR+90, Sect. 1.2] and [Kop97, Sect. 1.5].

Perspective Characteristic

General – Proprietary versus open
– Centralized versus distributed

Application – Fail-safe versus fail-operational
– Hard versus soft real-time

Design and implementation – Event-triggered versus time-triggered

Table 2.1.: Characteristics of real-time systems

2.1.1. Proprietary versus Open

This characteristic is probably of minor importance for the development of a real-time
system. Nevertheless, it should be mentioned at this point that real-time systems are
quite differentiated at this criterion.

2In Section 2.1.4 real-time deadlines will be discussed in detail.

12

2.1. Definition and Classification of Real-Time Systems

2.1.2. Centralized versus Distributed

At this point some concepts of distributed real-time system are briefly explained.
A demarcation to centralized systems is shown. There will be no evaluation of the
advantages or disadvantages of distributed systems to centralized systems. An answer
to the question, why and when a distiubuted solution is a good approach for a real-time
system, is given in [Kop97, Chap. 2] and [Lei07, Sect. 2.1.2].

A distributed system is, as the name clearly suggests, divided into several sub-
systems. In contrast to centralized systems, there is no shared address space over
the whole system. This raises the need for defining an interface to synchronize the
subsystems, to be able to share data and to link subsystems together so that properties
that have been established at subsystem level will hold at the system level. What is
referred to as the linking interface ensures encapsulation of the subsystems, hiding all
internal details and local interfaces.

Local Interfaces

Node 1 Node 2 Node 3

Linking Interface

Figure 2.2.: Linking interface

The linking interface requires a communication system which has to fulfill some
requirements to be qualified for a real-time system:

protocol latency The time offset between sending and receiving a message has to
be short enough. For an example, the time interval after sending a message until
receiving the acknowledgement from the opposition can be denominated as protocol
latency.

error detection It is extremely important for a communication system in the real-
time array to take note of bad transmissions. Error detection techniques allow
detecting such errors, while error correction enables reconstruction of the original
data.

end-to-end acknowledgment To provide a dependable service it is essential for
the receiver to send an acknowledgement back to the sender of the message that
the message was received after successful delivery.

2.1.3. Fail-Safe versus Fail-Operational

Fail-safeness is a characteristic of the application, not the computer system. A system
is fail-safe when there are one or more safe states in the environment that can be
reached in case of an error. At a railway signaling system for example, in case of a
system failure all signals are set to red to stop all trains and prevent a disaster. In

13

Chapter 2. Concepts of Real-Time Systems

fail-safe applications the computer system must have a high error detection coverage.
This means that the probability that an existing error is detected has to be as high as
possible. The interval between the start of an error and the detection of the same is
called error detection latency. Fail-safe applications are characterized by a low error
detection latency.

A system is fail-operational if no safe state can be achieved in the event of a system
failure. For example, a safe error state can not be identified for an aircraft. For
fail-operational applications the computer system must maintain a minimum level of
service, even after encountering an error.

2.1.4. Hard versus Soft Real-Time

The term real-time describes the property of a system to deliver certain results within
a predetermined period of time. The processing of the data does not necessarily have
to be carried out in a particularly fast way. It is essential that it is fast enough to
fulfill the timing constraints made by the real-time application.

The precise point in time at which a job3 becomes ready for execution is called the
release time of the job. The job can be scheduled by the system at or after the release
time of the job. If a job is released when the system begins execution, the job has no
release time. In contrast, the deadline of a job is the precise point in time at which
its computation (execution) must be completed. In this context, the relative deadline
of a job is the time between the release time and the deadline. A job has no deadline
if its deadline is at infinity.

As an example, a system which has to schedule a specific job periodically is
considered (Figure 2.3). A job (J) of this stream (J0, J1, . . . , Jn) is executed every 50
milliseconds. Assuming that the system starts execution of the first job 10 milliseconds
after system start, the release time of the job Ji is 10+i·50 milliseconds, for i = 0, 1,
Supposing each job must be completed before the subsequent job starts execution,
the deadline for Ji is the start of Ji+1. If the jobs must be completed sooner, maybe
after 20 milliseconds, the deadline for Ji is the start of Ji + 20 milliseconds. The
time between the release time of a job and its deadline (the relative deadline) is the
response time of a job. In this case the response time is 20 milliseconds.

Execution

Idle
Real Time

J0 J1
Relative Deadline

Release Time Deadline

Figure 2.3.: Timing requirements of jobs

To describe the quality of real-time, the reliability of the fulfillment of deadlines

3A job is an unit of work that can be scheduled by the system. At this point it is not important to
distinguish between variety levels of jobs like Task, Thread, etc.

14

2.1. Definition and Classification of Real-Time Systems

has to be defined. For this purpose, usually a distinction between hard real-time and
soft real-time is made:

Soft The response time is guaranteed only in a statistical way. The reliability of
meeting a deadline reaches an acceptable average or another statistical criterion.
The result is useful (can still be used) even after the deadline has passed.

Firm The response time is strict. A result is of no value after the deadline has passed.
Late results have no benefits for the system.

Hard The response time is strict. A result is of no use after the deadline has passed.
Missing a deadline has fatal consequences for the system.

A short comparison of hard real-time and soft real-time characteristics is given
in Table 2.2. The terms firm real-time and hard real-time are summarized in one
group. Differentiations are only made between soft real-time and hard real-time. More
information about these characteristics can be found in [Kop97, Sect. 1.5.1].

Characteristic Hard real-time Soft real-time

Response time Hard-required Soft-desired

Peak-load performance Predictable Degraded

Control of pace Environment Computer

Safety Often critical Non-critical

Size of data files Small Large

Redundancy type Active Checkpoint-recovery

Data integrity Short-term Long-term

Error detection Autonomous User assisted

Table 2.2.: Hard real-time versus soft real-time

Soft real-time response means that the duration of a job usually does not exceed
the specified time limit. This can be shown by measurements and static calculations.
A soft real-time system is allowed to miss its deadline infrequently. Soft real-time is
for example usually sufficient for multimedia applications. In contrast to that, hard
real-time behavior means that a provable upper bound for the duration of a job can
be given based on hardware specifications and model calculations. This is important
for critical applications such as for controlling engineering.

2.1.5. Event-Triggered versus Time-Triggered

In short it can be said that a real-time system is time-triggered, if control signals are
based solely on the progress of a global time notation. On the other hand a real-time
system is event-triggered, if control signals depend only on the occurrence of events.

15

Chapter 2. Concepts of Real-Time Systems

As described in [Kop97, Chap. 14], a time-triggered system starts all of its activities
at predetermined points in time. No interrupts are allowed to occur4. For instance,
the state of an input signal could be checked periodically every ten milliseconds. The
system reacts accordingly, if a state change is detected. In contrast, an event-triggered
system starts acting whenever a significant event occurs. For example, a change of
the input signal from above would generate an interrupt request, which causes the
interrupt service routine to be executed. The interrupt service routine reacts to the
event.

In a time-triggered real-time system activities are initiated at predefined points in
time. This requires intensive knowledge about the system, since all sorts of events have
to be predictable. Anything that is not completely known at the system design stage
can not be managed at all. The event-triggered system with its interrupt mechanism
offers flexibility and low response time. The described limitation of the time-triggered
system is not valid for an event-triggered system. If there is no upper limit to the
frequency of interrupts (the occurrence of events), the event-triggered system can
be completely occupied with interrupt handler execution. The load can become too
heavy and the system cannot respond in time [KB03].

2.2. Requirements of Real-Time Systems

In [Kop97, Chap. 1] several general functional and metafunctional requirements
for real-time systems are identified. An overview of these requirements is given in
Table 2.3.

Group Requirement

Functional – Data collection and monitoring
– Process control
– Direct digital control
– Man-machine interaction
– Error handling
– Archiving

Temporal – Predictability
– Error detection latency

Dependability – Reliability
– Safety
– Maintainability
– Availability

Architectural – Testability
– Backwards and forwards compatibility
– Standardization of components

Table 2.3.: Requirements of real-time systems

4With the exception of a periodic clock interrupt.

16

2.2. Requirements of Real-Time Systems

To describe the requirements of real-time systems it is necessary to introduce some
new concepts. The state of a controlled object (Figure 2.1) at any point in time can
be described by its state variables at that moment. A subset (or all) of these state
variables that are of particular interest are called real-time entities. A real-time entity
which can be changed by a subsystem is in the sphere of control of that subsystem.
The real-time entity can not be modified but observed outside of the sphere of control.
A real-time image is a temporally accurate picture of a state variable at a particular
moment in time. The real-time image is only accurate for a limited time interval
[Kop97, Chap. 5].

2.2.1. Functional Requirements

Functional requirements of a real-time system deal with the functions that a real-time
system must perform. Data observation, collection and monitoring are the main topics
in this field. An observation of a real-time entity is represented by a real-time image.
The scope of that image depends on the dynamics of the controlled object. After a
certain time has elapsed the data has to be marked as outdated. The collection and
the transformation of a sequence of real-time entities to standard measurement units
for averaging and measurement error reducing is called signal conditioning. Signal
conditioning requires the data to be checked for accuracy afterwards. If the resulting
real-time image is correct the data element is called an agreed data element.

A real-time system must inform the operator of the current state of the controlled
object and must also assist the operator in controlling the object. In this context an
extensive data logging and data reporting subsystem is often included as part of the
man-machine interface. This subsystem requires that every data entry is connected to
an exact time stamp.

2.2.2. Temporal Requirements

One important requirement on a real-time system is predictability. The classical hard
real-time design paradigm is based on worst-case assumptions and static resource
allocation. Because of this paradigm, unlike general purpose systems, real-time
systems may cause a waste of the available resources of the computer system and thus
increasing the overall system cost. Real-time systems must be predictable enough to
guarantee the required performance.

It is important for a real-time system to detect any error within the control system
within a short time and with a high probability. It is then possible to bring the system
into a safe state or to perform some corrective actions. The error detection latency is
of particular interest in the area of distributed real-time systems in context with the
linking interface.

To update a real-time image with the data of the corresponding real-time entity,
some actions have to take place (e.g. request sensor data; for distributed real-time
systems messages containing observation information have to be sent). The time delay
between the start of the observation event until the real-time image gets updated is

17

Chapter 2. Concepts of Real-Time Systems

called lag. For the periodical observation of data (respectively the periodical writing
of signals) the lag for each observation is variable. This is referred to as delay jitter
and it brings an additional uncertainty into the real-time system. It is desirable to
keep the delay jitter as small as possible and hence the lag as a constant delay.

2.2.3. Dependability Requirements

To describe the dependability of a real-time system the following five attributes are of
importance [LAK92]:

Maintainability rates the time that is needed to repair a system after a failure
occurred. To define a maintainability measure a mean-time to repair is introduced.

Availability is the assessment of correct service of the system. With respect to the
occurrence of failures according to a service and the time to repair the failures, the
availability is measured by the fraction of time that the system is ready to provide
the service.

Reliability describes the probability of a system to provide a specified service
within a defined timeframe. In relation to a constant failure rate of the system
(λfailures/hour) the reliability at time t is given by R(t) = exp(−λ(t− t0)).

Safety in this context means dealing with critical failure modes. The two failure
modes malign and benign are distinguished. The system and the subsystems that
are critical for the safe operation of the system must be protected by stable interface
to eliminate the possibility of error propagation.

Security is the ability of a system to prevent unauthorized access to information or
services.

These metafunctional attributes cover the quality of service a real-time system
delivers to its users. A detailed view on dependability requirements can be found in
[Kop97, Sect. 1.4].

2.2.4. Architectural Requirements

The field of architectural requirements for a real-time system describes properties like
testability and compatibility. In a market economy, these attributes are essential for a
project to choose between a variety of operating systems. The entire real-time system
has to provide a strategy to meet the following needs:

Testability is the property of a system to support the integration into a given test
context. It is the prerequisite for a successful validation of the system. Most
safety-critical systems require a prestigious certification.

Backwards and forwards compatibility assumes that the system can work with
input generated by an older product. Forward compatibility aims at the ability of a
design to easily accept input intended for later versions of itself.

18

2.3. Hardware for Real-Time Systems

Standardization of components increases the compatibility of the system with
other components. In addition, the know-how that is needed to deal with the system
is unified compared to similar systems.

2.3. Hardware for Real-Time Systems

A wide range of application for real-time operating systems can be found in the sphere
of embedded systems. Embedded systems are included in a variety of applications
and devices mostly invisible to the user (for instance medical supplies, electrical
household appliances, consumer electronics, automobiles, aircrafts, ...). Complex
systems which can be found in vehicles or aircrafts are built up from a variety of
connected embedded systems. Embedded systems are usually adapted specifically
to a certain job or scope. An optimised mix of specialized hardware and software is
often chosen for the dislocation of an embedded system. In general, such a mix is
optimised concerning the scope of the entire system and is highly restricted under the
following boundary conditions:

• Minimum costs

• Low place consumption

• Low memory footprint

• Low energy intake

Single components like processor and main memory are often based on advancements
of older components. This facilitates the long-term applicability and the acquisition
of replacement parts. In many applications, the use of an older processor architecture
can help to reduce costs.

Hardware which was developed for embedded systems is often designed to ensure
compliance with real-time requirements (also see [YMBYG08, Chap. 3]). High
availability and defined response times are frequently requested requirements for an
embedded system and thus for its operating system. Moreover, many embedded
systems are permanent operational which expects a low delinquency rate.

The structure of a processor is called the processor architecture. The various
architectures differ from one another primarily on the nature and level of some
functional units of the processor. A series of processors of an architecture can form a
processor family if they only differ in some peripheral properties. The term off-the-shelf
processor refers to architectures which are used primarily in desktop computers. These
processors belong mainly to the x86 family and are developed as hybrid CISC/RISC
architectures. In Section 2.4.1 we will have a look at the x86 family processors.
Processors which are specifically designed for real-time systems can be contrasted with
off-the-shelf processors generally associated with the embedded application. They
have significant advantages in terms of cost and power consumption.

19

Chapter 2. Concepts of Real-Time Systems

2.4. x86 Instruction Set Architecture

Since the x86 micro processor architecture family is the main architecture for the
aforementioned off-the-shelf systems we will examine this architecture more closely
below. For more detailed information please refer to [Wik13].

2.4.1. General Remarks and Design

The x86 architecture has been implemented in processors from Intel, Cyrix, AMD,
VIA and many other companies. Derived from the 8086 processor from Intel many
additions and extensions have been added to the x86 instruction set over the time. For
some advanced features, x86 compatible processors may require license from Intel and
AMD. The term x86 derived from the fact that early successors to the 8086 chip also
had names ending in 86. For licensing reasons, word marks were used as identifiers
for later developments (e.g. Pentium, Athlon, ...). In the following section different
identifiers are introduced for variations of the x86 architecture. They are sometimes
used as synonymous in literature. In this work, only the identifiers x86 and x86_64
will be used to refer to the architecture.5

x86, x86_32 is the name for the x86 32 bit architecture as introduced above in this
section.

i386, IA-32 was the first incarnation of x86 to support 32 bit computing. Technically
the term i386 refers to the 80386 processor from Intel. In literature the names
x86, x86_32, i386 and IA-32 are used interchangeably to describe the x86 32 bit
architecture.

IA-64, Itanium is a 64 bit architecture introduced by Intel for explicitly parallel
instruction computing (EPIC). This architecture can not be compared to the x86
family at all and is only listed here to avoid confusion.

x86_64, x64 is an extension of the x86 architecture that provides 64 bit computing.
It supports larger amounts of virtual and physical memory compared to its prede-
cessors. x86_64 also provides 64 bit registers and numerous other enhancements
which are not considered here.

Intel 64, EM64T, IA32e is also known as Extended Memory 64 Technology and
represents an extension from Intel to the IA-32 (x86) architecture. With the
introduction of Intel 64 as implementation of the x86_64 architecture the Itanium
architecture is diminishing in importance.

AMD64 is the implementation of the x86_64 architecture from AMD. It has some
technical differences to Intel 64. Since the gap between AMD64 and Intel 64 is
hardly noticeable in the context of the operating system, it is not of importance to
investigate this alterations in detail here.

5If it is needed to distinguish between company-related dialects, the name of the company will be
attached.

20

2.4. x86 Instruction Set Architecture

Some instructions differ in availability and functionality between Intel 64 and
AMD64. However, these are mainly relevant for compiler construction. Another
difference between both architectures is the missing I/O memory management unit
(IOMMU) on Intel 64 chips. This leads to the fact that direct memory accesses (DMA)
above 4 gigabyte for devices which do not support 64 bit addressing is not possible
on Intel 64 processors. In order to compensate this disadvantage, Intel introduced
the Intel Virtualization Technology (Intel VT, IVT) which can be partly compared to
IOMMU. Both techniques are not of significant importance for this thesis and hence
are not considered further.

2.4.2. Hyper-Threading Technology

The HT technology is used to improve parallelization of computations performed
on x86 processors. Two virtual cores are addressed for each processor core that is
physically present. The operating system can schedule two threads on one processor
core but the descision which thread is actually executed can not be influenced. Most
real-time operating systems (including this thesis) require hyper-threading to be
deactivated.

2.4.3. APIC Architecture

The advanced programmable interrupt controller (APIC) is designed to solve interrupt
routing efficiency issues in (x86) multicore systems. It consists of a local component
(local APIC) integrated into the processor itself, and an I/O APIC on a system bus
(Figure 2.4).

Processor 00

Core

local APIC

Processor 01

Core

local APIC
. . .

Processor n

Core

local APIC

INTICC

I/O APICPICInterrupt

Figure 2.4.: APIC architecture

A local APIC manages all external interrupts for a specific processor in an SMP
system. There is one local APIC in each CPU in the system. The details of the APIC
design are not important for this thesis. We will only list two features here which are
important for the implementation of the operating system presented in Part III.

21

Chapter 2. Concepts of Real-Time Systems

Inter processor interrupts (IPI) are used for one processor interrupting another
processor in a multiprocessor system. Details on IPI will be discussed later in
Section 10.2.1 and Section 11.4.4.

APIC timer is a high-resolution timer that can be used in different modes. The
operating system described in Part III can make use of this timer. Technical details
on the implementation can be found in Section 11.3.2.

2.4.4. Time Stamp Counter

The time stamp counter stores (or counts) the number of cycles since system start.
It is a 64 bit register available on each processor in the system. With this register a
high-resolution and low-overhead way of getting CPU timing information is provided.
There is no assurance that the time stamp counters of multiple CPUs are synchronized.
In such cases, getting reliable results is only possible by locking a thread to a single
CPU. Details for using the time stamp counter register are presented in Section 5.4.1.

2.4.5. Problems with Hard Real-Time on the x86 Architecture

Real-time behavior on x86 machines can be highly influenced by device drivers.
For example, if a device grabs the PCI bus for long periods during DMA (direct
memory access) activity, it can introduce significant latencies in the system. In Linux
operating systems a device driver is part of the kernel respectively is executed in the
kernel mode and has almost unrestricted access to kernel data structures. A badly
programmed device driver module can disrupt the behavior of real-time applications
with constrained timing requirements.

The x86 architecture supports the so called system management mode (SMM)
as an operating mode in which all normal execution of the operating system is
suspended. Special separate software like firmware is executed in high-privilege mode
and takes CPU time away from the operating system. SMM is entered via the system
management interrupt (SMI) which cannot be overridden or disabled by the operating
system. SMI can destroy real-time behavior.

22

3
Real-Time Operating Systems

Real-time operating systems (RTOS) are operating systems with additional real-time
functions for the unconditional adherence to time constraints and the predictability of
process behavior. Such operating systems must be able to guarantee the compliance
of defined response times even in the worst case. This mainly concerns the areas of
scheduling, memory management and interrupt handling. In addition to this a RTOS
must support an analytical analysis of its temporal behavior under all specified load
and fault conditions [Kop97, Chap. 10].

This chapter describes basic techniques and structures of real-time operating systems
and discusses some dynamic properties. Basic scheduling concepts are discussed in
Section 3.2. Section 3.5 gives an overview of the POSIX standard for RTOS. Finally,
Section 3.6 deals with capabilities and necessary enhancements to qualify the Linux
kernel to be real-time. Architectural features of the kernel will also be discussed.

3.1. Task Management

In the following the term task is understood as a process from kernel view. A process
is a logical relationship of different threads which all serve a common purpose. A
process is an instance of a computer program that is being executed. Multiple threads
can exist within the same process and share resources such as memory, while different
processes do not share these resources. Threads are different execution points of the
same process respective task. Figure 3.1 illustrates the meaning of the terms process,
task and thread.

. . .
Kernel Space

User Space

Thread Task

Process

Figure 3.1.: Internal and external view on processes

23

Chapter 3. Real-Time Operating Systems

Below it is assumed that a task always has exactly one thread. In other words,
for the sake of simplicity, the terms task and thread are synonymous unless specified
otherwise. The execution of a task is managed by the kernel, particularly the scheduler
which will be discussed later in this chapter (Section 3.2).

3.1.1. Task States

In most operating systems, a task can be in the state inactive, running, ready or
blocked. In state running the execution of commands on the CPU takes place. The task
is blocked if it waits on an event. Ready means that the task could be executed but
the resource (CPU) is busy with the execution of another task. During the creation
of the task and after termination the task is in state inactive. Figure 3.2 illustrates
the different states a task can have. The activation of the task and the transition
from ready to running is decided by the scheduler. The scheduler can also put the
task back from running to ready state if for example the time slice allocated for this
thread has expired. If the execution cannot proceed for some reason the kernel puts
the thread in the suspension queue and the task enters the blocked state.

Inactive

Active

Activation

Termination, Error

Ready

Running

Blocked

Figure 3.2.: Preemptive tasks

When a new task is activated by the kernel, the kernel allocates memory for the new
task and loads the code of the process into the allocated segment if needed (threads
inside the same process share one instance of the code). A data structure is needed
by the kernel for each thread to control and schedule the tasks. This data structure
is called the thread control block (TCB). It contains stack and code pointer, status
variables and a reference to the process the thread lives in (process control block,
PCB). Additional information on process and thread relations can be found in [Tan08,
Sect. 2.1.6].

3.1.2. Task Hierarchy

In POSIX like operating systems, tasks are bounded into a distinct task hierarchy.
If a new process is created, the new process is associated as a child with the parent
process. Child processes of one parent process are related as siblings. Depending on
the operating system a child process inherits a copy of the parents process control

24

3.2. Scheduling

block on creation. Task hierarchy and process creation will be discussed later in
Chapter 11. Further information can be found in [Lov10, Chap. 3].

3.1.3. Task Types

Based on the way real-time tasks recur over a period of time, it is possible to classify
them into three main categories. We assume all tasks in the system to be preemptible
at any point in time.

Periodic tasks are characterized by three parameters: the period P , the computation
time C and the relative deadline D. The task T generates a job at each integer
multiple of P , and each such job has an execution requirement of C execution units,
and must complete execution before its deadline D. The jobs are independent from
each other. Each task does not interact (e.g. exchanging messages) with other jobs.

A schedulability test for a set of n periodic tasks states that the utilization factor:

U =
n∑

i=1

Ci

Pi
(3.1)

must be less than or equal to 1 (U ≤ 1). The concept of periodic tasks was first
introduced by Chung Laung Liu [LL73] and has shown remarkable use for the
modeling of recurring processes in real-time systems.

Sporadic tasks recur at random points in time. Like periodic tasks, they are
characterized by three parameters: the minimum separation G, the computation time
C and the relative deadline D. The minimum separation between two consecutive
instances of the task implies that once an instance of a sporadic task occurs, the
next instance cannot occur before G time units have elapsed.

Aperiodic tasks can arise at random points in time. They are in many ways similar
to a sporadic task. The minimum separation time between two consecutive instances
can be 0. That is, two or more instances of an aperiodic task might occur at the
same time.

3.2. Scheduling

In an environment with more than one task being in the ready or running state
simultaneously, a method by which these tasks are given access to CPU time is needed.
A task or process scheduler handles the execution of tasks on one or more CPUs and
balances the load of the system. In this section we will focus on task scheduling in
real-time operating systems.

Several classifications of real-time task scheduling algorithms exist. Based on how
the scheduling points are defined a scheduler can be classified into one of three main
types which will be discussed in this section.

25

Chapter 3. Real-Time Operating Systems

3.2.1. Clock Driven Scheduling Strategies

A clock driven scheduler determines the scheduling points by the interrupts received
from a clock. This kind of scheduling strategy is simple and efficient. They follow a
static scheduling plan which is developed offline. None or only a few decisions need to
be made at runtime. Therefore, these schedulers incur very little run time overhead.
Handling periodic and sporadic tasks is not possible since the exact time of occurrence
of these tasks can not be predicted. For this reason, this type of scheduler is also
called static scheduler.

A clock driven cyclic scheduler is discussed in Section 10.3.2.

3.2.2. Event Driven Scheduling Strategies

For event driven schedulers, scheduling points are defined by certain events which
precludes clock interrupts. In event driven scheduling, the scheduling points are
defined by task events. In contradistinction to clock driven strategies event driven
schedulers can handle aperiodic and sporadic tasks with some restrictions. In this
section we will briefly outline two types of event driven schedulers.

3.2.2.1. Earliest-Deadline-First Scheduling

Earliest-deadline-first (EDF) or least-time-to-go is a dynamic scheduling algorithm
which makes its decisions so that deadlines for all tasks are met. The time points are
always considered for scheduling, which either a new task is started or a active task is
finished.

• All waiting tasks are sorted in ascending order of deadlines.

• The task which must be completed first, receives the CPU.

A task set is schedulable under EDF, if it satisfies the condition that the total
processor utilization (Equation 3.2) due to the task set is less than 1.

EDF is a well discussed algorithm in literature. Readers with further interest can
find information in [Liu00, Sect. 6.2.2], [Kop97, Sect. 11.3.1] and [SRS98].

3.2.2.2. Rate-Monotonic Scheduling

A classic dynamic preemptive algorithm for scheduling a set of periodic independent
tasks with static priorities is the Rata-Monotonic algorithm (RM) [LL73]. The
following assumptions are valid for all tasks of the set:

• All tasks in the set (for which hard deadlines exist) are periodic.

• The deterministic deadline of each task Ti is equal to its period Pi.

• No resource sharing; all tasks are independent from each other.

• The computation time Ci of each task is known and constant.

26

3.2. Scheduling

• Context switch times and other thread operations are free and have no impact on
the model.

The static priorities are assigned on the basis of the cycle duration Pi of the task.
The shorter the cycle duration is, the higher is the task’s priority p(). The priorities
are linear with the rate. At runtime the process with the highest priority is always
selected.

p(Ti) =
1

Pi

Liu and Layland [LL73] proved that for a set of n periodic tasks with unique periods,
a feasible schedule that will always meet deadlines exists if the CPU utilization (see
Equation 3.1) is below a specific bound:

U ≤ n ·
(

n
√
2− 1

)

It follows that the schedulability test for RM is:

n∑
i=1

Ci

Pi
≤ n ·

(
n
√
2− 1

)
(3.2)

Equation 3.2 offers a worst-case condition that characterizes schedulability of a set
of tasks under the rate-monotonic algorithm. When the number of processes tends
towards infinity the bound will tend towards:

lim
n→∞n ·

(
n
√
2− 1

)
= ln2 ≈ 0.693

This means that with the rate-monotonic algorithm if not more than 69.3% of
available processor cycles are used, an optimal scheduling can be guaranteed where
each task meets its deadline [Liu00]. This is, in fact, quite a pessimistic scenario. Task
sets are often schedulable by the rate-monotonic algorithm at much higher utilization
levels, even with worst-case phasing. In general, it has been shown that when periods
are generated from a uniform distribution and Pj evenly divides Pi for 1 ≤ j ≤ i, the
breakdown utilization will be in the 88% to 92% range [Leh90].

3.2.3. Hybrid Scheduling Strategies

A hybrid scheduler uses both clock interrupts as well as event occurrences to define
its scheduling points. This class of scheduling strategies can fully handle aperiodic
and sporadic tasks but loses some accuracy while treating periodic tasks. We will
discuss two types of scheduling strategies in this chapter.

3.2.3.1. First-In-First-Out Scheduling

The First-In-First-Out (FIFO) scheduling strategy, equivalent to First-Come-First-
Served (FCFS), describes the principle of a queue processing technique by ordering

27

Chapter 3. Real-Time Operating Systems

tasks where they leave the queue in the order they arrived. Each task in this scheduling
class is executed until it is suspended by a task at a higher priority level or it releases
the CPU by itself. Since context switches inside the class only occur in these situations,
and no reorganization of the task queue is required, scheduling overhead is minimal.
As long as every task eventually completes or releases the CPU by itself, there is no
starvation. In an environment where some tasks might not complete, there can be
starvation. In addition, throughput can be low, since long tasks can hog the CPU for
a long time.

3.2.3.2. Round-Robin Scheduling

The Round-Robin (RR) method allows all tasks (each one at a time) to run on the
CPU for a short period (timeslice). The tasks are managed in a queue. The foremost
task is given access to the CPU until its timeslice expires. After that the task is added
to the tail of the queue. The next task is selected according to the FIFO principle. A
task can release the CPU before the timeslice expires. In this case, the resources are
immediately reallocated and the CPU is occupied by the next task.

To add priority level scheduling to this method the scheduler holds a task queue for
each priority level. Only the queue with the highest priority is treaded. If there are
no tasks in this queue then the next priority level is considered.

3.3. Partitioning

Many real-time operating systems implement a concept called partitioning. Each
partition has its own memory space and hosts at least one process. Processes within
one partition should not cause adverse effects to other partitions. We will concentrate
on the scheduling aspects of partitioning mechanisms. Further information concerning
memory protection, resource allocation and inter-partition communication can be
found in [LSOH07].

A partition scheduler will execute processes on a CPU inside a partition according
to a specified sequence of time windows. The tasks in each partition run on that
CPU only during the time window for that partition. All tasks in all other partitions
are not allowed to run during this time window. The key aspect for the partition
scheduling is the ability to guarantee CPU time for a set of tasks. The tasks inside a
partition are scheduled by a secondary scheduler (Section 3.2). There are two major
varieties of partition scheduling:

Static partition scheduling assigns a fixed bound of CPU time within a given
period to a partition. This time is seen as an execution window in which no other
task from any other partition can be scheduled.

Dynamic partition scheduling requests that a percentage of processing resources
within a given period be reserved for a particular partition. A running task can be
preempted by a task from another dynamic partition (e.g. higher task priority).

28

3.4. Main System Services

3.4. Main System Services

Apart from scheduling strategies a real-time operating system has to provide other
important features. Most of them are highly dependent on the operating-system
design and implementation. At this point we will only list some important features
required of a real-time operating system, and in particular those that are normally
absent in traditional operating systems. In Part II these features are examined for a
range of concrete real-time operating systems.

Timer support with adequate resolution is one of the most important issues for an
real-time operating system. Real-time applications often require the support of timer
services with resolution of the order of a few microseconds. Traditional operating
systems often do not provide time services with sufficiently high resolution.

Task priority levels which are not changed by the operating system to balance the
system load or for other reasons are required. These static priority levels separate
real-time tasks from normal system tasks.

Fast task preemption is needed to ensure that whenever a high priority task be-
comes ready for execution, an executing low priority task instantly yields the CPU
to it. The time duration for which a higher priority task waits before it is allowed
to execute is quantitatively expressed as the corresponding task preemption time.

Predictable and fast interrupt latency is required to keep the time delay be-
tween the occurrence of an interrupt and the corresponding treatment as short
as possible. Furthermore, the treatment should be preemptive to ensure task
preemption.

Interprocess communication shares critical resources among real-time tasks. This
includes events and other synchronizing mechanisms.

Memory management with support for a real-time task to control paging and
swapping is needed. Memory locking prevents a page from being swapped from
memory to hard disk. In the absence of a memory locking feature, memory access
times of real-time tasks can show large jitter, as the access time would greatly
depend on whether the required page is in the physical memory or has been swapped
out.

Error detection in case a real-time task has missed its deadline. The system should
provide a mechanism for reporting such violations.

3.5. POSIX Standard

The Institute of Electrical and Electronics Engineers (IEEE) has specified a family of
related standards to define the application programming interface (API) for UNIX
like operating systems. The so called portable operating system interface (POSIX)

29

Chapter 3. Real-Time Operating Systems

describes the interaction between the operating system and its applications. POSIX
also defines a standard threading library API which is supported by most modern
operating systems.

POSIX:2008 (IEEE Std 1003.1-2008) represents the current version of the standard.
The specification of the user and software interface of the operating system is divided
into four parts [Com08]:

Base definitions General terms, concepts, and interfaces common to all volumes of
this standard, including utility conventions and C-language header definitions.

System interfaces and headers Definitions for system service functions and sub-
routines, language-specific system services for the C programming language, function
issues, including portability, error handling, and error recovery.

Commands and utilities Definitions for a standard source code-level interface to
command interpretation services (shell) and common utility programs for application
programs.

Explanations Extended rationale that did not fit well into the rest of the document
structure.

3.5.1. Real-Time System Profiles

A group of four profiles for real-time POSIX characterizing single-task and multi-task
operating systems with and without file system support are known as IEEE Std
1003.13-2003 [Com08] (revision of IEEE Std 1003.13-1998) PSE51 to PSE54. This
profiles are appropriate for the development and execution of realtime applications.

Minimal realtime system profile (PSE51) These systems are designed for unat-
tended control of one or more I/O devices. Neither the interaction with users nor
the access and management of file systems is required. The system consists of a
single POSIX process, which contains one or more threads of control. The process
is executed by a single CPU without memory management unit (MMU).

Realtime controller system profile (PSE52) PSE52 systems are an extension of
the PSE51 profile. Support for a file system interface and asynchronous (nonblocking)
I/O interfaces has been added to this profile. The file system can be implemented
in memory (no mass storage is required).

Dedicated realtime system profile (PSE53) These systems are an extension of
the PSE52 profile. Support for multiple processes has been added. The profile
contains a uniform interface for device drivers and files, but no hierarchical file
system. Since memory management hardware may be provided, the functionality
of memory locking is provided. The hardware model for this profile assumes one or
more processors, each with its own MMU, in the same system.

30

3.6. Real-Time and Linux

Multi-purpose realtime system profile (PSE54) PSE54 systems include all the
functionality of the other three profiles. A mix of real-time and non-real-time tasks
can be run at this level, some being interactive user tasks. Support for multiple
multithreaded processes is required so that multitasking may be done by threads,
processes, or both.

3.6. Real-Time and Linux

Many approaches to equip the basic Linux operating system with real-time features
have been published. In this chapter we will have a look on the most distinct techniques.
A more detailed discussion on this can be found in Chapter 6 and Chapter 7.

3.6.1. Real-Time Kernel

This method provides a compact real-time kernel placed between the hardware layer
und the standard Linux kernel. The real-time kernel controls the execution of real-time
tasks, intercepts the hardware interrupts and runs the standard Linux kernel as a
background task. The real-time tasks run at the kernel level with kernel privileges.
Linux and its user tasks run whenever no real-time task is ready to execute. Linux
is preempted whenever a higher priority task (real-time task) becomes ready for
execution.

Hardware

K
er

ne
l
Sp

ac
e

U
se

r
Sp

ac
e

Real-Time Kernel (Micro Kernel)

Linux RT Task RT Task
. . .

Process Process Process
. . .

Interrupts

Interrupts Scheduling

Scheduling

RAW Data

RAW Data

RAW Data

Figure 3.3.: Real-time kernel design

As shown in Figure 3.3 the hardware interrupt communication is completely ab-
stracted by the real-time kernel (micro kernel). The standard Linux kernel cannot
preempt any interrupt processing in the micro kernel. The original Linux functions
for enabling and disabling interrupts (cli, sti and iret) have to be replaced by

31

Chapter 3. Real-Time Operating Systems

emulating macros inside the Linux kernel. This will permit interrupts to be still
available for the real-time tasks, even if the Linux kernel has disabled them. The micro
kernel design is implemented in real-time operating systems like RTLinux [YB97].

3.6.2. Kernel Preemption

This strategy modifies the Linux kernel in a way that tasks are preemptible at
almost every time. Normally, tasks inside the kernel mode (e.g. system-call) are not
preemptible. Thus it is possible that the execution of a high priority task is delayed
by a lower priority task in kernel mode. Additionally, threaded interrupt handlers
are introduced to Linux. As a consequence, interrupts have an own priority level
and can be interrupted by higher priority tasks. This design is implemented by the
RT_PREEMPT kernel patch (Chapter 6).

3.6.3. Resource Reservation

Giving a resource exclusivity to a certain task eliminates the need for the task to
wait for this resource. If a CPU is assigned to a task and no other task is able to be
executed on this CPU the task can not be interrupted. In addition to the exclusion of
other tasks from being executed on a certain CPU a more strict routing of interrupts
is introduced to the Linux kernel. In Chapter 7 we will discuss this approach in detail.

32

Part II.
Real-Time Operating Systems

Analysis

33

4
Overview of Available Real-Time
Operating Systems

The variety and number of available real-time operating systems is enormous. This
chapter provides a detailed overview of the current most popular real-time operating
systems. The overview shown in Table 4.1 offers a first comparison of different real-time
operating systems on the basis of some general characteristics.

Name Name and company name

Version Latest stable release and date

Source Source code is available

Hardware Supported platforms (selection)

64 64 bit architectures are supported

TPL Thread priority levels

Usage Marketing target

Kernel Kernel architecture

MP Multiprocessor support

35

Chapter 4. Overview of Available Real-Time Operating Systems

N
am

e
V

er
si

on
S
ou

rc
e

H
ar

d
w

ar
e

64
T

P
L

U
sa

ge
K

er
n
el

M
P

N
ot

es
R

ef
.

A
to

m
th

re
ad

s
co

m
m

un
it
y

1.
3

(2
01

0)
op

en
A
V

R
,S

T
M

8
no

25
6

em
be

dd
ed

m
ic

ro
no

sc
he

du
le

r
fo

r
em

be
d-

de
d

sy
st

em
s

[L
aw

]

B
eR

T
O

S
D

ev
el

er
2.

7.
0

(2
01

1)
op

en
A

R
M

,A
V

R
,

P
ow

er
P

C
no

23
2

em
be

dd
e

m
ic

ro
no

x8
6

em
ul

at
ed

[D
ev

]

C
hi

bi
O

S/
R
T

co
m

m
un

it
y

2.
4.

1
(2

01
2)

op
en

x8
6,

A
R

M
,A

V
R

,
P
ow

er
P

C
,.

..
no

12
8

em
be

dd
ed

m
ic

ro
no

In
te

l8
03

86
[S

ir
]

D
eo

s
D

D
C

-I
Q

1
(2

00
9)

cl
os

ed
x8

6,
P
ow

er
P

C
no

23
2

em
be

dd
e

m
ic

ro
no

D
O

-1
78

B
le

ve
lA

ce
r-

ti
fie

d
[D

D
C

a]

D
SP

na
no

R
ow

eB
ot

s
2

(2
00

8)
av

ai
la

bl
e

P
IC

,M
16

C
,

A
R

M
no

23
2

em
be

dd
e

m
ic

ro
no

ba
se

d
on

U
ni

so
n,

sy
s-

te
m

on
a

ch
ip

[R
ow

a]

eC
os

co
m

m
un

it
y

3.
0

(2
00

9)
op

en
x8

6,
A

R
M

,
P
ow

er
P

C
,M

IP
S

ye
s

32
em

be
dd

ed
m

ic
ro

no
[e

C
o]

E
R

IK
A

E
vi

de
nc

e
1.

5.
1

(2
01

0)
op

en
A

R
M

,A
V

R
,.

..
no

1
em

be
dd

ed
m

on
ol

it
hi

c
ye

s
O

SE
K

/V
D

X
R
T

O
S

[E
vi

]

em
bO

S
Se

gg
er

3.
86

d
(2

01
2)

cl
os

ed
A

R
M

,A
V

R
,.

..
no

25
6

em
be

dd
ed

m
ic

ro
no

[S
E

G
]

Fr
ee

R
T

O
S

R
ea

l
T

im
e

E
ng

in
ee

rs
7.

1.
0

(2
01

1)
op

en
x8

6,
A

R
M

,A
V

R
,

..
.

no
25

6
em

be
dd

ed
m

ic
ro

no
[R

ea
]

H
ea

rt
O

S
D

D
C

-I
Q

1
(2

00
9)

cl
os

ed
x8

6,
A

R
M

,
P
ow

er
P

C
no

23
2

em
be

dd
e

m
ic

ro
no

[D
D

C
b]

H
LR

T
co

m
m

un
it
y

2.
6.

27
.1

9
(2

01
3)

op
en

x8
6

no
64

ge
ne

ra
l

m
on

ol
it

hi
c

ye
s

L
in

ux
pa

tc
h

[E
fk

05
]

K
U

R
T

K
an

sa
s

U
ni

ve
rs

it
y

1.
23

(2
00

0)
op

en
x8

6
no

25
6

ge
ne

ra
l

m
on

ol
it

hi
c

no
no

ha
rd

re
al

-t
im

e,
de

-
fu

nc
t

[U
ni

]

In
te

gr
it
y-

17
8B

G
re

en
H

il
ls

So
ft
w
ar

e
11

(2
01

2)
cl

os
ed

x8
6,

M
IP

S,
P
ow

er
P

C
,A

R
M

ye
s

51
2

em
be

dd
ed

m
ic

ro
ye

s
D

O
-1

78
B

le
ve

lA
ce

r-
ti

fie
d

[G
re

]

Ly
nx

O
S

L
yn

ux
W

or
ks

5.
0

(2
00

7)
av

ai
la

bl
e

A
R

M
,M

ip
s,

P
ow

er
P

C
no

51
2

em
be

dd
ed

m
ic

ro
ye

s
fu

ll
10

03
.1

,.
1b

&
.1

c
[L

yn
]

36

N
am

e
V

er
si

on
S
ou

rc
e

H
ar

d
w

ar
e

64
T

P
L

U
sa

ge
K

er
n
el

M
P

N
ot

es
R

ef
.

M
on

ta
V

is
ta

Li
nu

x
M

on
ta

V
is

ta
6

(2
00

9)
op

en
x8

6,
A

R
M

,
..

.
ye

s
10

24
em

be
dd

ed
m

ic
ro

ye
s

[M
on

]

N
eu

tr
in

o
Q

N
X

Sy
st

em
s

6.
5.

0
(2

01
0)

cl
os

ed
x8

6,
A

R
M

,
P
ow

er
P

C
,.

..
ye

s
64

em
be

dd
ed

m
ic

ro
ye

s
fu

ll
10

03
.1

,.
1b

&
.1

c
[B

la
]

O
pe

nC
om

R
T

O
S

A
ltr

eo
ni

c
N

V
1.

4
(2

01
1)

av
ai

la
bl

e
A

R
M

,P
ow

er
P

C
ye

s
25

6
em

be
dd

ed
m

ic
ro

ye
s

[A
lt

]

O
SE

E
N

E
A

A
B

5.
5

(2
00

8)
cl

os
ed

A
R

M
,M

IP
S,

P
ow

er
P

C
no

32
em

be
dd

ed
m

ic
ro

ye
s

[E
ne

]

P
ik

eO
S

SY
SG

O
3.

2
(2

01
1)

cl
os

ed
x8

6,
M

IP
S,

A
R

M
,P

ow
er

P
C

no
25

6
em

be
dd

ed
m

ic
ro

ye
s

10
03

.1
3

P
SE

52
[S

Y
S]

R
T

Li
nu

x
W

in
d

R
iv

er
Sy

st
em

s
3.

2r
c1

(2
00

7)
op

en
sa

m
e

as
L
in

ux
ye

s
10

24
ge

ne
ra

l
m

ic
ro

ye
s

10
03

.1
3

P
SE

51
[Y

B
]

R
T
_
P
R
E
E
M
P
T

co
m

m
un

it
y

2.
6.

31
.6

(2
01

1)
op

en
x8

6,
A

R
M

,S
H

ye
s

64
ge

ne
ra

l
m

on
ol

it
hi

c
ye

s
L
in

ux
pa

tc
h

[M
G

]

T
hr

ea
dX

E
xp

re
ss

Lo
gi

c
G

5.
5.

5
(2

00
8)

av
ai

la
bl

e
x8

6,
A

R
M

,S
H

,
P
ow

er
P

C
,M

IP
S

no
32

em
be

dd
ed

m
ic

ro
ye

s
[E

xp
]

μ
C

/O
S-

II
I

M
ic

ri
um

3
(2

00
9)

cl
os

ed
A

R
M

,A
V

R
ye

s
64

em
be

dd
ed

m
ic

ro
no

[M
ic

a]

U
ni

so
n

R
ow

eB
ot

s
4.

0
(2

00
8)

op
en

P
IC

,M
16

C
,

A
R

M
,S

H
A

R
C

no
23

2
em

be
dd

e
m

ic
ro

ye
s

sy
st

em
on

a
ch

ip
[R

ow
b]

V
xW

or
ks

W
in

d
R
iv

er
Sy

st
em

s
6.

7
(2

00
9)

cl
os

ed
x8

6,
A

R
M

,S
H

,
P
ow

er
P

C
,M

IP
S

ye
s

25
6

em
be

dd
ed

m
ic

ro
ye

s
10

03
.1

3
P

SE
52

[W
in

]

W
in

do
w

s
C

E
M

ic
ro

so
ft

7
(2

01
1)

cl
os

ed
x8

6,
A

R
M

,S
H

,
P
ow

er
P

C
,M

IP
S

no
25

6
em

be
dd

ed
m

on
ol

it
hi

c
ye

s
no

U
N

IX
lik

e
O

S
[M

ic
b]

T
ab

le
4.

1.
:

R
ea

l-t
im

e
op

er
at

in
g

sy
st

em
s

ov
er

vi
ew

37

Chapter 4. Overview of Available Real-Time Operating Systems

Some systems from Table 4.1 like DSPano are designed to have very low memory
footprint and high modularity. This allows the systems to be used on a variety of
different CPUs, even digital signal controllers. Figure 4.1 shows a simplified overview
of memory footprints of different systems. To keep the size of such a system small, the
system often consists only of a kernel containing a real-time scheduler and some task
synchronization primitives. These low memory systems are not designed to deal with a
variety of hardware nor to satisfy any dynamic terms. Real-time operating systems like
VxWorks and PikeOS have also been developed to fit a small footprint in an embedded
environment. However, they support a larger selection of hardware and have their
own driver layer. QNX Neutrino also falls into this category of embedded non Linux
operating systems. However, Neutrino has some properties that should be examined
in greater detail later (e.g. micro kernel architecture and dynamic partitioning).

Code Size

1 kB

10 kB

100 kB

1000 kB
1003.13 PSE54

Linux . . . RTLinux, KURT, MontaVistaLinux

1003.13 PSE51/52

VxWorks, Neutrino, PikeOS
ThreadX

eCos, LynxOS

OSEK/VDX

ERIKA
BeRTOS, μC/OS-III, DSPnano, HeartOS, OSE

Figure 4.1.: Typical memory footprints of real-time operating systems

The ERIKA operating system was developed to support multicore devices for
the automotive markets. ERIKA provides a minimal footprint real-time kernel and
supports various code generation tools. Only fixed priority scheduling is implemented.
ERIKA is a minimal system with the aim to do mostly I/O processing in a highly
embedded environment. The characteristics of the system are not discussed further
here.

Real-time operating systems like Deos, Integrity-178B, PikeOS and LynxOS are
designed to be DO-178B certified for safety-critical applications. These systems are
commonly used in avionics applications. The kernel sources are not available for any
examinations1.

Windows CE is optimized for having a small memory footprint. It is mainly used
for devices that do not allow for end-user extensions and can be stored into ROM for
example. Some parts of the source code are available to customers.

The systems discussed in the following sections are of greater importance. The
chapter concludes with a detailed examination of some selected real-time operating
systems.

1Excluding LynxOS, the source code is available in part with appropriate license.

38

4.1. Atomthreads

Table 4.2 provides a comparison of different hardware characteristics of these
systems.

Name Real-time operating system name

Hardware Support for hardware busses

Networking Support for network protocols

File systems Support for file systems (RTFS stands for real-time file system)

In addition to hardware characteristics Table 4.3 shows some technical properties.

Name Real-time operating system name

Development hosts Development platform

Components Support for floating point operations, math library, memory manage-
ment

Standards/API Standards

4.1. Atomthreads

Due to its extensive documentation and easy readable code Atomthreads provides a
good platform for learning RTOS internals. The entire operating system fits into a
few source files. No file system, IP stack or device drivers are included. All of the
architecture-dependent aspects are encapsulated into what are called CPU architecture
ports. Only 2 architectures are supported by default (AVR, STM8).

Atomthreads is released under the open source BSD license and is free to use for
commercial or educational purposes without restriction. It was designed and written
by Kelvin Lawson in 2010.

4.1.1. Structure of the Kernel

The Atomthreads kernel consists of 6 modules implemented as libraries. The starting
routine of the system is part of the CPU architecture port. This routine initializes
the operating system by using the libraries.

Kernel Core kernel functionality such as managing the queue of ready threads,
creating threads and context-switch decisions.

Architecture depending parts Entry point of the system and architecture depen-
dent parts such as interrupt routines.

Mutex A mutual exclusion library.

Semaphore A counting semaphore library.

39

Chapter 4. Overview of Available Real-Time Operating Systems

N
am

e
D

ev
el

op
m

en
t

h
os

ts
C

om
p
on

en
ts

S
ta

n
d
ar

d
s/

A
P

I
F
P

M
L

M
M

U

M
on

ta
V

is
ta

Li
nu

x
L
in

ux
ye

s
ye

s
ye

s
A

N
SI

an
d

P
O

SI
X

eC
os

W
in

do
w

s,
L
in

ux
ye

s
ye

s
ye

s
A

N
SI

C
-8

9,
P

O
SI

X
.1

a,
1b

,1
c,

1d
,μ

IT
R

O
N

3.
02

K
U

R
T

L
in

ux
ye

s
ye

s
ye

s

N
eu

tr
in

o
W

in
do

w
s,

L
in

ux
,S

ol
ar

is
,s

el
f-
ho

st
ed

ye
s

ye
s

ye
s

P
O

SI
X

.1
a,

1b
,1

c,
1d

,P
SE

52

H
LR

T
/R
T
_
P
R
E
E
M
P
T

L
in

ux
ye

s
ye

s
ye

s
A

N
SI

C
-8

9

R
T

Li
nu

x
L
in

ux
ye

s
ye

s
ye

s
A

N
SI

C
-8

9,
P

O
SI

X
.1

a,
1b

,1
c,

1d
,P

SE
51

T
hr

ea
dX

W
in

do
w

s,
L
in

ux
ye

s
ye

s
no

A
N

SI
C

-8
9,

D
O

-1
78

B
,I

E
C

-6
15

08
,.

..

V
xW

or
ks

W
in

do
w

s,
L
in

ux
,S

ol
ar

is
ye

s
ye

s
ye

s
A

N
SI

C
-8

9,
D

O
-1

78
B

,I
E

C
-6

15
08

,P
O

SI
X

.1
a,

1b
,1

c,
1d

,P
SE

52

T
ab

le
4.

2.
:

R
ea

l-t
im

e
op

er
at

in
g

sy
st

em
s

ha
rd

w
ar

e
ch

ar
ac

te
ri

st
ic

s

N
am

e
H

ar
d
w

ar
e

N
et

w
or

ki
n
g

F
il
e

sy
st

em
s

ID
E

S
A

T
A

S
C

S
I

U
S
B

P
C

I
P

C
Ie

C
A

N
IP

T
C

P
U

D
P

FA
T

N
T

F
S

E
X

T
R
T

F
S

M
on

ta
V

is
ta

Li
nu

x
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
ye

s
no

ye
s

no

eC
os

ye
s

no
no

ye
s

ye
s

no
ye

s
ye

s
ye

s
ye

s
ye

s
no

no
no

K
U

R
T

ye
s

no
ye

s
no

ye
s

no
no

ye
s

ye
s

ye
s

ye
s

no
ye

s
no

N
eu

tr
in

o
ye

s
ye

s
ye

s
ye

s
ye

s
no

no
ye

s
ye

s
ye

s
ye

s
no

ye
s

ye
s

H
LR

T
/R
T
_
P
R
E
E
M
P
T

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

no

R
T

Li
nu

x
ye

s
no

ye
s

no
ye

s
no

ye
s

ye
s

ye
s

ye
s

ye
s

no
ye

s
no

T
hr

ea
dX

ye
s

no
no

ye
s

no
no

no
ye

s
ye

s
ye

s
ye

s
no

no
no

V
xW

or
ks

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

no
no

ye
s

T
ab

le
4.

3.
:

R
ea

l-t
im

e
op

er
at

in
g

sy
st

em
s

te
ch

ni
ca

lc
ha

ra
ct

er
is

ti
cs

40

4.2. eCos

Queue A queue and message-passing library.

Timer Kernel system clock functionality and timer functionality for kernel and
application code.

4.1.2. CPU Architecture Ports

A port to a CPU architecture can comprise just one or two modules which provide
the architecture specific functionality, such as the context switch routine which saves
and restores processor registers on a thread switch. The kernel port is split into a few
modules (files):

atomport.c Those functions which can be written in C.

atomport-asm.s Main register save/restore assembler routines.

atomuser.h Port-specific header required by the kernel for each port.

A context switch is performed by the simple strategy below. After the context
switch the return address on the stack will be the new thread’s return address.

• Save the CPU registers to the stack.

• Save the final stack pointer to the TCB (thread control block).

• Get the new thread’s stack pointer off the TCB.

• Restore the CPU registers from the stack.

4.2. eCos

Since 2004, eCos (embedded configurable operating system) is distributed under the
GPL license with an exception which permits proprietary application code. The
non-free version of the eCos real-time operating system, eCosPro, is a commercial
distribution which incorporates proprietary software components and with additional
features that are not released as free software. eCos is designed to be portable to a
wide range of target architectures. It has a small memory footprint and is used in
embedded systems. The kernel is open source and only free available open source
GNU development tools are used to build an image. Only the FAT file system and
some file systems for flash memory devices are supported by eCos.

eCos was developed for the embedded market. The compiled system consists only
of one binary image including all applications statically. eCos can not be compared
with systems such VxWorks or QNX Neutrino. In such systems it is possible to add
and remove applications at runtime. Moreover, only a very small selection of modern
hardware for off-the-shelf multicore architectures is used by eCos. For example, no
SATA, PCIe or even multicore is supported.

41

Chapter 4. Overview of Available Real-Time Operating Systems

4.2.1. Design

The eCos core consists of a suite of functions needed in many embedded applications.

Device drivers Include standard serial, Ethernet, USB and others. CAN bus support
is also included in this section.

Kernel Like many real-time operating systems on the embedded context, the eCos
kernel was designed to satisfy the following objectives:

• Low interrupt latency

• Low task switching latency

• Small memory footprint

• Deterministic behavior

eCos implements a classic multi-threaded architecture with a set of synchronization
primitives. It is intended for embedded systems and applications which need only
one process with multiple threads.

ANSI C-89 and math library Provide standard compatibility with function calls.

Hardware abstraction layer Provides a software layer that gives access to hard-
ware. It allows programmers to write device-independent applications by providing
standard operating system calls (POSIX) to hardware.

4.3. VxWorks

VxWorks started as a set of enhancements to a simple real-time operating system
called VRTX. VxWorks was created to turn the VRTX kernel into a full embedded
real-time operating system and development environment. Since 1987, VxWorks is
designed for use in deeply embedded systems. Typical fields of application include,
for example, machine control, medical equipment and network infrastructure.

Like many other embedded operating systems, the development of applications for
VxWorks takes place on a more powerful host computer. The integrated development
environment for software in VxWorks is called Tornado. It consits of the operating
system itself, development tools as Wind River Compiler and Wind River GNU
Compiler, graphical user interface (based on Eclipse) which establishes host-target
communication, and a VxWorks simulator called VxSim. Supported development
platforms are Linux, Windows and Solaris.

VxWorks supports the POSIX specification and basic system calls including the
pthreads extensions. At this time only the x86 64 bit architecture is supported. In
addition to the FAT file system VxWorks provides its own file system and some file
systems for flash memory devices.

The kernel source is not supplied within a VxWorks license.

42

4.4. μC/OS-III

4.3.1. Protection Domains Architecture

In VxWorks user-space applications are isolated from other user-space applications
as well as the kernel via memory protection mechanisms. Comparable with QNX
Neutrino VxWorks also uses different separated and protected memory areas. A
separated memory area in VxWorks is called protection domain. Figure 4.2 illustrates
the protection domains architecture of VxWorks. The microkernel provides multitask-
ing, interrupt support and scheduling. The intertask communications mechanisms
supported by VxWorks include shared memory, message queues, semaphores, events
and pipes, sockets and remote procedure calls, and signals.

VxWorks Microkernel

Tasks Objects
. . .

IPC Objects

Shared Library Objects

Application

Task Task
. . .

Application

Task Task
. . .

RAW Data
Protected LinkageUnprotected Linkage

Kernel
Protection
Domain

Shared Data
Protection
Domain

Shared Library
Protection
Domain

Application
Protection
Domain

Figure 4.2.: VxWorks protection domains architecture

4.4. μC/OS-III

The Micro-Controller Operating Systems Version 3 is a priority-based real-time
multitasking operating system kernel for microprocessors, written mainly in the C

43

Chapter 4. Overview of Available Real-Time Operating Systems

programming language. It was introduced in the year 2009 by Micrium Embedded
Software.

4.4.1. Design

μC/OS-III can manage up to 64 tasks. The four highest priority tasks and the four
lowest priority tasks are reserved for system services. Each task is an infinite loop
and can be in one of the states described in Section 3.1.1 and have a unique priority
level assigned. The task priority level also serves as the task identifier.

4.5. MontaVistaLinux

The MontaVistaLinux (formerly known as Hard Hat Linux) operating system is
tailored to the needs of embedded software developers. MontaVista sells subscriptions,
which consist of software, documentation, and technical support. An integrated
development environment is included known as DevRocket. The environment is
a set of Eclipse plug-ins for facilitating application and system development with
MontaVistaLinux. DevRocket runs on Linux, Solaris and Windows.

The software includes a Linux kernel and toolchain aimed at a specific hardware
configuration. The distribution is available in three editions, each aimed at different
market segments.

MontaVista Carrier Grade Edition The commercial CGA Linux development
platform ensures long-term support and high availability.

MontaVista Professional Edition The commercial professional edition has some
benefits which are missing in the other versions including integration with open
source tools for a particular hardware architecture, and support.

MontaVista Mobilinux The Mobilinux version is a highly embedded operating
system mainly targeted at smartphones.

4.6. ThreadX

ThreadX was designed specifically for deeply embedded applications. The system is
implemented as a C library. Only the features used by the application are brought
into the final image. The name ThreadX is derived from the fact that threads are
used as the executable modules. ThreadX is widely used in a variety of consumer
electronics (mainly ink and laser printers). The operating system is delivered with
complete C and assembly source code.

The operating system ships with its own application interface, currently ThreadX
V5 API. Several compatibility kits for ThreadX are available. The POSIX kit defines
the basic pthread services.

44

4.7. RTLinux

Developing embedded systems using ThreadX is usually done on a host machine
running Linux or Windows. Several commercial development tools are available for
ThreadX.

4.6.1. Pico Kernel

The operating system uses a pico kernel design which is another name for micro
kernel. The term pico kernel is used to further emphasize its small size. The ThreadX
package can be extended by some extra modules. FileX is a FAT compatible file
system. Networking support such TCP and UDP is included in the NetX module.
The USBX module is required for USB support.

4.7. RTLinux

RTLinux [YB] is an extensions for Linux to achieve real time capability using the RTAI
API [Dip]. RTAI was founded by Paolo Mantegazza from the Technical University of
Milan. RTLinux was developed by Victor Yodaiken and Michael Barabanov [YB97]
at the University of New Mexico in 1996 and was originally sold by FSMLabs. In
2007 the rights on RTLinux were acquired by the embedded Linux specialist Wind
River Systems.

Real-time tasks are implemented as kernel tasks. In RTLinux a user space process
can communicate with a real-time task via real-time signals. Hardware interrupts and
timed signals can be handled at user space signal handlers. It is not possible to call
any Linux system calls nor RTLinux services from these handlers.

Because the latest stable version of RTLinux is designed for the Linux kernel version
2.4.29 it lacks some important features of modern computer systems. For instance,
support for SATA devices is not provided. Further, new x86 CPU architectures are
also not supported. The latest CPU that is known to be functioning is from the Intel
Pentium series.

4.7.1. Structure of the Kernel

RTLinux is based on a micro kernel design which provides a real-time executive
underneath the original Linux kernel (Section 3.6.1). The micro kernel allows running
of real-time tasks at the kernel level, and turns the original Linux into one of these
tasks 2. An (real-time) application can be defined as a collection of (real-time) tasks,
and Linux would be the one with the lowest priority. Interrupts are intercepted by
RTLinux. The interrupt handling of the Linux kernel is adjusted so that Linux has no
control over hardware interrupts. Instead, these interrupts are intercepted by RTLinux
and passed to Linux as soft interrupts when they intended for Linux. Interrupts to
real-time tasks (eg. timer) will be treated by RTLinux and can not be turned off by
Linux.

2Original Linux task includes the Linux kernel and all Linux processes running above it.

45

Chapter 4. Overview of Available Real-Time Operating Systems

Hardware

Interrupt Dispatcher Interrupt Handler

Linux

RT Task RT Task
. . .

Interrupt

sti
registered

sti

RTLinux
Microkernel

RTLinux
Tasks

Figure 4.3.: RTLinux kernel design

Real-time tasks in RTLinux run as kernel modules. They can be loaded into the
micro kernel from Linux at run time. It is possible to load and unload RTLinux
modules without the need of recompiling the kernel or even rebooting the computer.
RTLinux offers a bidirectional communication mechanism between real-time tasks and
Linux processes. What are referred to as RT-FIFOs can be accessed from the RTLinux
side by some atomic and non blocking kernel functions. From the Linux processes
point of view, RT-FIFOs are accessed like traditional UNIX character devices.

RTLinux consists of a set of kernel modules, along with some patches to body of
the Linux kernel. The real-time system is loaded as a set of modules into the patched
linux kernel.

4.8. QNX, HLRT and RT-Preempt

This thesis discusses three real-time operating systems in detail. We will begin with
the RT-Preempt extension, a popular real-time extension for Linux, which is developed
and maintained by a small group of developers from the Linux kernel mailing list 3.
The second real-time operating system is the HLRT patch, which was originally created
at the University of Bremen. The RT-Preempt extension and the HLRT patch pursue
completely different strategies in order to enable real-time behavior. However, both
improve the Linux kernel in a fundamental way, which makes these extensions highly
interesting for this thesis. The third real-time operating system is QNX Neutrino,

3http://www.tux.org/lkml/

46

4.8. QNX, HLRT and RT-Preempt

one of the most widely used real-time operating systems. Particularly Neutrino’s
partitioning strategies and the microkernel design are significant for this thesis.

Detailed discussions about QNX Neutrino (Chapter 8), the HLRT (Chapter 7) and
RT-Preempt (Chapter 6) patches are provided in the next chapters.

47

5
Evaluating (POSIX) Real-Time
Operating Systems

Evaluating a real-time operating system in a way that allows a reliable comparison to
other operating systems is a difficult task. Depending on the application area (and
often the aim of a project) the various attributes of the systems must be weighted
differently. For instance, one of the first things that must be done when selecting a
real-time operating system for a project is to identify the real-time constraints and
categorize them. In some cases an accurate timing with a deviation of some nano
seconds is highly important, in other cases the timing behavior of a general-purpose
operating system might be sufficient. The methods and strategies described in this
chapter do not consider any project related needs for real-time operating systems.1

The intention of this chapter is to work out a comparable unit for the different technical
factors of a real-time operating system. After identification and categorization of
these technical factors in Section 5.2 a framework for how to measure dynamic sizes
and interpret values in the described categories is introduced in Section 5.4.

The method presented is applied in the following chapters. Each of the detailed
investigations of real-time operating systems2 is deposited with the results of this
method.

5.1. Unconsidered Aspects

For a convincing comparison of real-time operating systems it is necessary to mention
technical features as well as non-technical aspects like economic reasons or contract
relations. It is quite necessary to compare the cost of licenses of different systems
when choosing a real-time operating system for a particular project. In addition,
software companies offer commercial real-time operating systems often in different
models for support, training and consulting. These factors may affect the development
time of software for the project under favorable circumstances.

Furthermore, the development of software for an operating system is limited by the
availability of tools (e.g. compilers and debuggers). It should also be noted which

1Section 5.1 gives an impression of such characteristics. Further information can be found in [CL07].
2Chapter 6, Chapter 7, Chapter 8 and Chapter 12

49

Chapter 5. Evaluating (POSIX) Real-Time Operating Systems

programming languages are available for the predestinated platform. Especially in
the embedded systems field in most cases a complete tool chain is offered by the
manufacturers, which also includes a (graphical) development environment. This
environment may also contain communication channels to interact with the running
system on the embedded hardware.

Supported standards (and in general compatibility of a system) may be particularly
relevant when porting an existing project to another platform i.e. operating system.
A high correlation between different programming interfaces (API) may lead to less
effort in adapting existing software.

During the comparison of real-time operating systems and technical evaluation
according to the method developed in this chapter, the above-mentioned characteristics
are not considered.

5.2. Identify Technical Values

In Chapter 4 some statical properties of real-time operating systems were presented.
For an evaluative comparison of different systems, it is necessary to extend the list
of above properties by a couple of dynamic aspects. These dynamic properties are
visible at system runtime and are strongly influenced by the underlying platform.3

These aspects can commonly be referred to as performance values:

• Task period accuracy

• Task switch latency

• Task preemption latency

• Task creation latency

• Interrupt latency

• Interrupt dispatch latency

• Interrupt to task latency

Performance benchmarking is the process for determining and comparing the above
dynamic properties. Depending on the benchmarking method, various properties
are identified. The method used in this work to collect performance metrics derives
directly from the Rhealstone variant [KP89]. Section 5.2.1 discusses which values are
collected and analyzed. The approach described in the Rhealstone paper requires the
discovery of six different reference values which are known as Rhealstone components.
For benchmarking, these components are measured separately and independently
from each other. The following comparison of the measurement values implies that
the measurements are all performed under homogenous conditions. This relates
primarily to the hardware, which is identical for all measurements. The obtained

3A description of the used hardware setup can be found in Section 5.3.1.

50

5.2. Identify Technical Values

values can be compared within a component among the various systems. Furthermore,
the Rhealstone method describes how the empirical results can be combined to a
representative figure of merit (Rhealstone per time unit).

For this thesis, not all of the components described in the Rhealstone paper are
important for the intended comparison. The semaphore-shuffle time and the deadlock-
break time are not considered. As can be seen in Chapter 10 and Chapter 11 no
functionality to the Linux kernel has been extended or altered for the environments
concerned. The semaphore-shuffle time is taken into account indirectly in some test
introduced in Section 5.4.3. In modern operating systems (multicore mode) the
deadlock-break time is not applicable in the way it is introduced in the Rhealstone
paper. Some new components (see also [HGCD00]) have been added to the Rhealstone
method which will be discussed in the following sections.

5.2.1. Benchmark Methodology

As already described in the introduction, identifying the considered reference values
is based on the Rhealstone method. The technical realization of the measurements
is explained in Section 5.4. The performance values which are to be determined are
listed below:

Task period accuracy The accuracy of the period defined for a task. Depending
on the operating system the appropriate technique of the system for the realization
of periodic tasks must be selected.

Task switch latency The time required for a task switch on a CPU (Figure 5.1).
All for the measurement relevant tasks are executed with the same priority and are
scheduled according to the FIFO policy (Section 3.2.3.1). A task initiates a task
switch by calling the yield() function.

Task n

Task 2

Task 1

Real Time
Δs1 Δs2 Δsn Δsn+1

Figure 5.1.: Task switch latency

The task switch latency is measured in four stages. In each stage the number of
active tasks is increased (2, 16, 128, 512). Therewith, effects of the cache on the
scheduling can be made visible.

Task preemption latency Similar to the task switch latency measurement, the
time that is needed for a task switch is measured with the task preemption latency

51

Chapter 5. Evaluating (POSIX) Real-Time Operating Systems

measurement. However, a running task is preempted by a higher prioritized task.
The task switch is performed by putting a higher prioritized task to the ready
state. As will be seen in Section 5.4.3, this measurement requires a certain degree
of synchronization.

Task creation latency The time needed for generating a new task is measured with
the task creation latency. Depending on the operating system the newly created
task must have a higher priority than the task which is currently running. In Linux
a newly created task inherits some properties of the parent process such as the task
priority level. However, the created tasks are placed at the head of the FIFO queue,
whereby the executed task is interrupted by the new task.

Interrupt latency The time which elapses from the occurrence (or triggering) of
an interrupt to execution of the handler code (interrupt-service routine, ISR)
(Figure 5.2) is measured with the interrupt latency.

ISR

Task

Real Time

Kernel Space

Δi1 Δd1 Δi2 Δd2

Interrupt time

. . .

Δi3

Interrupt dispatch latency
Interrupt latency

Figure 5.2.: Interrupt times

Interrupt dispatch latency The time required by the execution of an interrupt
handler to switch back to the interrupted task (Figure 5.2) is measured with the
interrupt dispatch latency.

Interrupt to task latency The time that elapses from the occurrence of an inter-
rupt to execution of a second level handler interrupt (Figure 5.3). The second level
interrupt handler (SLIH) is running in task context. Thus, the measuring includes
at least one task switch. Similar to the task period accuracy benchmark test the
appropriate technique of the system for the realization of second level interrupt
handlers must be selected.

A series of measurements consists of the independent multiple repetition n of a
measurement {a1, . . . , an}. The result of a measurement series is represented by two
values:

Average or arithmetic mean of all values in one series

A =
1

n

n∑
i=1

ai

52

5.3. Case Scenarios for Real-Time Systems

ISR

SLIH

Task

Real Time

Kernel Space

Task switch

Δt1

Interrupt time

Δt2

. . .

Figure 5.3.: Interrupt to task latency

Standard deviation from the average

σ =

√√√√ 1

n

n∑
i=1

(ai −A)2

5.3. Case Scenarios for Real-Time Systems

The determination of the reference values introduced above has to take place under the
very same conditions for all systems that are going to be considered. For each system,
a set of tests is implemented and is executed on identical hardware. Section 5.3.1
discusses the underlying platform for the tests performed in later chapters.

The tests are performed in various scenarios. In addition to the unloaded application
of the tests4 two other scenarios are considered:

Task schedule utilization Each CPU in the system is utilized by various compu-
tational tasks. This increases the number of active processes and affects the load
balancing behavior of the scheduler. The utilization is achieved by starting four
(for each CPU in the system) computationally intensive processes.

I/O utilization The I/O utilization is achieved by starting two (for each CPU in the
system) processes only performing operations on the file system and the underlying
hardware. This increases the number of active processes in the system and affects
the quantity of interrupt occurrences.

These scenarios are intended to simulate a realistic environment during test execution.
Especially for real-time operating systems, it is necessary to know the effects of the
environment on the running system. The measurement of a reference value can only
be meaningfully assessed by taking account of the described factors.

For the simulation of these scenarios, the stress5 application is used. The program is
a deliberately simple workload generator for POSIX systems. It imposes a configurable

4A setup as neutral as possible where only services required by the system are active.
5http://freecode.com/projects/stress

53

Chapter 5. Evaluating (POSIX) Real-Time Operating Systems

amount of CPU, memory, I/O, and disk stress on the system. Because of its simplicity,
the application is well suited to be compiled and started on all systems to be tested
without adjustments. A separate process is started for every parameter passed to the
application. Each process fulfills only the desired jop until the main application is
terminated. By distributing the load across several processes a multi-processor system
can be evenly loaded. The scenarios are realized with the stress application as follows:

• ./stress --vm 8 --cpu 8

This spawns 8 processes spinning on the sqrt() function call and 8 processes
spinning on malloc() and free(). As described in Section 5.3.1 the used
hardware has 4 CPU cores. On each CPU core at least 2 processes causing load are
running and affect the test.

• ./stress --hdd 4 --io 4

This spawns 4 processes spinning on sync() and 4 processes spinning on write()

and unlink(). As a consequence, each CPU in the system will receive a lot of
I/O work.

Tests are executed in three different scenarios. These scenarios are equal on each
system.

5.3.1. Development Board

All benchmark tests run on the same x86_64 platform. The different operating
systems are installed on a Precision T3500 Workstation (Table 5.1). The CPU used
for benchmarking comprises 4 separate cores. The hyper-threading technology is not
used and is therefore disabled (Section 2.4.2).

CPU Intel Xeon W3530

Clock rate 2.8 GHz Family 6

CPU cores 4 Model 26

L1 Cache 8192 KB Stepping 5

instruction set 64 bit (SSE4.2)

Board Dell XPDFK Mainboard

Chipset Intel X58

Memory 3 x 1 GB DDR3 1066 MHz

Additional

Network Broadcom 5754 Gigabit Ethernet-Controller

Measurement Meilhaus ANT8 Logic Analyser

Table 5.1.: Development board specification

54

5.4. Benchmark Test Framework

5.4. Benchmark Test Framework

The structure and the process for the individual benchmark tests will be discussed
in the following sections. The implementations of the tests are explained only to a
limited extend since the test implementations are strongly dependent upon the used
systems. The complete framework including the implementations of the tests can be
accessed at [Rad14]. The underlying framework is identical in all tests. In particular
the technique used for determining measurement values (Section 5.4.1) and specific
configuration requirements of the tests are outsourced to header-files. The iteration of
the test procedures is set by a constant ITERATIONS. The evaluation of the operating
systems is executed with a fixed iteration size of 250. In addition to the iteration
constant the benchmark tests are influenced by the following parameters:

ITERATIONS (benchmark.h) Number of test cycles

BENCHMARK_CPU (benchmark.h) Starting CPU for the benchmark test

RT_PRIO (benchmark.h) Initial priority level for the benchmark test (depending
on the test it is necessary to create processes in the range of RT_PRIO ±2)

PARPORT_ADDR, PARPORT_IRQ (benchmark_linux.h, benchmark_qnx.h) Pa-
rameters for the parallel port interface (Section 5.4.3.1 and Section 5.4.3.4)

PARPORT_DEV (benchmark_linux.h) The device-file of the parallel port on Linux
based systems (Section 5.4.3.1)

PARTITION_NAME, BUDGET_PERCENT (benchmark_qnx.h) Name and budget for
partitioning on a QNX system

During execution the benchmark test and all created processes are bound to a
certain CPU (BENCHMARK_CPU). The reason for this is explained in Section 5.4.1.
During test initialisation it is necessary to arrange an affinity to this CPU by using
the interface provided by the used operating system. Additionally a fixed clock speed
for the BENCHMARK_CPU is required. The clock speed must not vary during test
execution. A deviation from the defined clock speed or migrating to another CPU
will cause distorted results.

5.4.1. Measurement Details

The measured values, which are determined during the benchmark test execution are
relative temporal information unrelated to the actual system time. An absolute time
value which is valid after test termination is not required for the benchmark tests. It
is sufficient to measure the time interval between two events unrelated to the system
time. Thus, an overhead can be saved that would otherwise be required for precise
determination of the time points.

The time stamp counter (TSC) register (Section 2.4.4) is used to determine time
values inside a test. The register is accessible without the involvement of the operating

55

Chapter 5. Evaluating (POSIX) Real-Time Operating Systems

system. Due to its precision, the TSC register is well suited for the time measurements
performed by a test. Since each CPU has its own TSC register which is not synchronized
with other CPUs6, the measured values from one CPU can not be compared with
measured values from other CPUs. In addition to the overhead of the operating
system for task migration this is the main reason why the test execution is bound with
all active components to a certain CPU. The frequency of the TSC is bound to the
timing of the CPU clock. The interpretation of the values of the TSC register change
if the CPU clock speed is scaled. In order to obtain an accurate and comparable
difference between two TSC register values the CPU clock speed must not be modified.
For compatibility reasons, only the lower (32 bit) part of the TSC register is evaluated.
Overruns of such 32 bit value are easy to recognize and can easily be fixed (Listing 5.1)
after test execution during processing of measurement results.

...period_x_ms.c

if (stop > start)

step = stop - start;

else
step = (((uint32_t)-1) - start) + stop;

...

Listing 5.1: Test result overrun

The values of a TSC based time tracking are measured in cycles. The framework
previously introduced in this chapter provides a macro rdtsc_32() which is able
to determine the current value of the register (Listing 5.2). rdtscp and cpuid are
serializing calls. They prevent the CPU from reordering instructions around these
calls. [Pao10] describes how code execution should be measured on x86 architecures:

1. Call cpuid() and rdtsc_32() to get cycle count when starting the measurement.

2. Call rdtscp_32() and cpuid() to get the counter when measurement finishes.

...benchmark.h

#define rdtsc_32(tsc) \

__asm__ __volatile__("rdtscp" : "=a" (tsc) : : "edx")

#define rdtscp_32(tsc) \

__asm__ __volatile__("rdtscp" : "=a" (tsc) : : "edx")

#define cpuid() \

__asm__ __volatile__("cpuid" ::: "rax", "rbx", "rcx", "rdx")

...

Listing 5.2: Read time stamp counter

During test execution, values are stored in a table in memory, the structure of which
depends on the benchmark test. No data is stored in files or transferred to a console
while the test is in progress. This would include parts of the operating system that

6In fact, some operating systems synchronize the TSC register of all CPUs in the system. It cannot
be assumed that all operating systems perform a synchronization with sufficient precision.

56

5.4. Benchmark Test Framework

would otherwise not be relevant for the test execution and the measurement would
be distorted unnecessarily. As already mentioned, two values of the TSC register are
always necessary for a measurement. The table that receives the measurement data
needs to have at least two fields for 32 bit values per measurement step. If several
tasks are involved in a measurement, the table of results is placed in a memory area
where it can be accessed by different processes (IPC shared memory). It is important
to ensure that no access to this memory area is performed within a measuring step.
Depending on the operating system, dereferencing a memory address within a shared
memory segment involves mechanisms of the operating system of which the overhead
cannot be estimated. The measured values are first administered locally in the relevant
process memory and then later are transferred to the shared memory segment. This
is done either after completion of all measurement steps or between two measurement
steps if no impact on the following measurement step can occur. The management of
a table inside a shared memory segment may require synchronized access to this area.

POSIX operating systems provide a mechanism for excluding memory pages of
a process from being swapped out (mlockall()). For the tasks involved in a
benchmark test, this technique is used. In addition, all used memory areas located in
the stack segment of the process are initialized in order to achieve a stack pre-fault.
This causes all memory areas to be available at test start and be permanently located
in the memory.

In addition to the measurements based on the TSC register, a second series of
measurements is performed for the benchmark tests to measure the accuracy of periodic
tasks. With the support of a logic analyzer, a pulse is measured on external hardware
that should correspond exactly to the period of the task. Instead of determining
the TSC register value the test stimulates a trigger. The pulse is sent through the
parallel port. In each task period a data pin of the parallel port is alternated by
the test. The implementation of this test is used to verify the first measurement
series values on a system which is not directly involved. From the results of the logic
analyzer measurements it can be concluded that the accuracy and quality of the TSC
measurements are sufficient.

5.4.2. Operating System Overhead

To some extent, the operating system overhead constitutes exactly what is to be
measured by the presented benchmark tests. However, the test itself during test
execution is also a component of the system and affects the overhead of the operating
system in some areas. It is not always possible to substantiate the overhead caused
by the test from the operating system overhead. For example, the method described
above for measuring the period of a task by using a logic analyzer involves various
operating system components that can delay the transmission of the pulse through the
parallel port. In Linux based operating systems, a device file is used for stimulating
the parallel port. Thus the file system layer of the kernel is involved into test execution.
This overhead, however, is applicable for all Linux based systems and therefore is of

57

Chapter 5. Evaluating (POSIX) Real-Time Operating Systems

no consequence. In QNX, a similar technique is used for transmitting a pulse through
the parallel port so that the overhead is also produced in a comparable manner.

In the following sections overhead that can occur is described together with the test
procedure explanation if necessary. Delays that occur between the execution of two
measuring steps are not relevant for the measurement and can therefore be ignored.

5.4.3. Test Design

The following section will show how the reference values as identified in Section 5.2.1
are determined. Figure 5.4 shows the principal sequence of a benchmark test. The
step OS setup is determined by the conditions of the running operating system. The
necessary tasks here will be explained later in the related chapters. The initialization
of the hardware is particularly important for the interrupt-related tests. This step
prepares the used interface for generating interrupts from inside the test procedure.
The additional hardware for the task period accuracy benchmark tests is also initialized
in this step. The individual steps required by init HW are explained later in this
chapter and will be discussed again in the chapters related to operating systems. The
steps shutdown HW and OS postprocessing form the counterpart to the initialization
step. After completion of the tests reserved hardware and operating system resources
are properly released in this step.

Figure 5.4.: Benchmark test behaviour

Once the hardware and the operating system are prepared for the subsequent test,
an individual initialization phase (test setup) is performed for each test. This is part
of the actual benchmark test and prepares the used memory instances depending on
the test procedure. Depending on the number of tasks involved in the test execution,
the process stack, heap or a more complex inter process communication structure is
used for storing the measured data. The memory organization is illustrated for each
test in the following sections. It may be necessary to release previously initialized
memory structures after test execution (test finish). The order of the individual steps
shown in Figure 5.4 does not apply equally to all tested operating systems. It may be
necessary to print results before releasing previously initialized memory structures. In
addition to the memory organization, the creation of other tasks that are used for the
test execution is realised within the test setup phase.

Each benchmark test involves a cyclical component in which the measurement
takes place (main loop). The test loop and parts of the setup and finishing parts are

58

5.4. Benchmark Test Framework

explained in the following sections. Workflows are represented using UML sequence
diagrams.

No output of test results (e.g. to a terminal) is made during test execution. The
results are printed (print results) to stdout after all data has been received.

5.4.3.1. Task Period Accuracy

Figure 5.5 illustrates the benchmark test for measuring the task period accuracy.
How a periodic task is initialized depends on the operating system which is used.
The process described here outlines the initialization of a periodic tasks after storage
preparation. The aspects of individual operating systems for generating periodic tasks
are referred to in the appropriate chapters.

Figure 5.5.: Periodic task benchmark test

The call to yield() indicates the end of a period to the operating system. The
function is replaced by a version that is required by the operating system to signal the
end of a period if necessary. The periodic task is suspended until the start of the next
period. The occurrence of the timer signal (fires()) constitutes the beginning of
the next period. The previously suspended task continues and immediately determines
the current value of the TSC register.

In this measurement, the accuracy of the clock source used by the operating system
and the latency for continuing the task (schedule()) is weighted. The continuing
task must have the highest priority so that the CPU is immediately given to that task.
A measurement result is stored in the memory structure described above. A result
complies to the difference between two contiguous readings. The expectation for a
result is exactly the task period time. Thus, for n desired results the measuring is
repeated n+ 1 times.

The test is performed with different period time values: 500μs, 10ms, 100ms and
1sec. The values selected for the period time do not reflect the limits of possible
values. Limits for task period times vary according to the operating system. However,
it was ensured that at least one value is below the global timer frequency intended by

59

Chapter 5. Evaluating (POSIX) Real-Time Operating Systems

the operating system (if available). For Linux-based systems, this value describes the
frequency of timer interrupt and is usually defined as 10ms.

The macro TRIGGER_PARPORT (which must be defined at compile time of the test)
configures the benchmark program so that the previously described logic analyzer is
addressed.

5.4.3.2. Task Change Times

The sequence shown in Figure 5.6 illustrates the benchmark tests for preemption
latency and task switch latency measurement. Since both tests are similar in many
aspects they are presented here together in one diagram. Differences in both tests are
shown inside the alt block.

At least two new processes are created before the test main loop starts. Scheduling
for the new processes is managed under the FIFO policy. As described in Section 5.2.1
the number of processes that are created varies for later test cases. The created
processes start with a priority level lower than the initial benchmark process (thus
the initial task is not interrupted). The measurements in the test main loop are based
on interactions between the new created processes. To complete the initialization
phase, the priority of the initial benchmark process is lowered. Thus, the processes
previously generated are executed according to the priority and order of the operating
system and preempt the initial process. Each task starts with its own initialization
phase and then blocks by waiting for an event (wait_for_signal()). Since all
higher prioritized tasks are blocking now, the initial benchmark task comes back to
life and initiates the start of the main loop by sending an event (send_signal()).
The event preempts the initial task immediately. After test completion the additional
created processes terminate and the initial process continues with the finish phase.

The preemption latency measurement takes place between two tasks with different
priorities (high and low). However, both tasks need to have a priority level higher
than other active tasks in the system (apart from the initial benchmark task during
initialization). The low task can only be preempted by the high task. If the high
task gives up the CPU, the low task is scheduled instantly. Inside the test main loop
the high task is blocked by waiting for a signal (wait_for_signal()) which can
only be sent by the low task. The current TSC register value is stored by the low
task before the signal is sent. After the event is sent the high task preempts the
low task and also stores the current TSC register value. Thus, the time between the
arrival of an event on which a higher priority task is waiting and the continuation of
the previously suspended task is measured. Depending on the operating system, the
synchronization events can be implemented in different ways. If an operating system
offers a special method for process synchronization both variants will be implemented.
At least one version of the preemption latency measurement test is implemented for
each operating system (using POSIX signals).

In order to measure the task switch latency two (or more) processes are needed,
each with the same priority level. Similar to the preemption latency tests, the created
processes for the task switch latency measurement need to have a priority level higher

60

5.4. Benchmark Test Framework

Figure 5.6.: Task switch/preemption benchmark test

than other active tasks in the system (apart from the initial benchmark task during
initialization). The additional tasks for this test are absolutely identical in behavior.
In each test step, the current value of the TSC register is stored before a task switch
is initiated by calling yield(). From the measurement values the time between the
preemption of one task and the continuation of another one can be calculated.

61

Chapter 5. Evaluating (POSIX) Real-Time Operating Systems

For each task involved in the test the measurement data is collected locally. After
test completion (main loop exit) the data is transferred to a shared memory area.
Each test steps contains two TSC register values: start and end. The process Id is
additionally stored for each value.

5.4.3.3. Task Creation Time

For the determination of the task creation time a new process is created within the
main loop of the test for each test step. The newly created process has a higher
priority level than the main benchmark process. Thus, the main task is preempted
immediately by the new task.7 The current value of the TSC register is determined
immediately before a new process is created (fork()). The values are stored locally.
The new task determines the current value of the TSC register again and stores the
value in a shared memory segment. After the additional task is terminated the main
benchmark task transfers the previously stored TSC register value to the shared
memory segment.

Figure 5.7.: Task creation benchmark test

Requesting the TSC register values takes place as early as possible in the newly
created task. A small overhead follows from the if–fork() construction (Listing 5.3)
which is common for POSIX operating systems. However, this overhead applies to all
the operating systems analysed in later chapters and therefore can be ignored.

...
fork_higher_prio.c

rdtsc_32(tsc);

if (0 == fork()) {

rdtsc_32(tsc);

...

Listing 5.3: Fork new process in task creation benchmark test

7For Linux based systems it is sufficient if the new task has the same priority like the main benchmark
task (compare Section 5.2.1).

62

5.4. Benchmark Test Framework

5.4.3.4. Interrupt Times

The basic structure for a benchmark test to determine the interrupt latency time,
interrupt dispatch latency time and interrupt to task latency time is shown in Figure 5.8.
The figure illustrates all components involved in test execution. The individual
specifications of the above mentioned test characteristics are explained below.

Figure 5.8.: Interrupt benchmark test

The parallel port is used for triggering interrupts. In a particular configuration
the port allows the test to provoke interrupts. The specification for the parallel port
describes that bit 4 of the control register (port 3) turns interrupts on. The parallel
port creates an interrupt each time the electrical signal at pin 10 (ACK bit) changes
from low to high. To actually generate interrupts one of the data bits is connected with
the ACK bit. The test then stimulates this data bit and thus triggers an interrupt. For
the interrupt latency and interrupt dispatch latency measurements it is necessary to
implement an interrupt handler. The handler is designed according to the conditions
of the used operating system and is connected with the parallel port interrupt (usually
number 7).

The interrupt latency benchmark test is shown in Figure 5.9. After storing the
current TSC register value in a local memory area the parallel port (Interrupt HW) is
invoked to cause an interrupt (trigger()). The interrupt handler then determines
the current time value from the TSC register. As well as the interrupt latency, the
measurement includes the overhead needed to write data to the parallel port.

Similar to the interrupt latency benchmark test, an interrupt handler needs to be
implemented for the interrupt dispatch latency measurement. The process of the
interrupt dispatch test is shown in Figure 5.10. Like before interrupts are generated by
calling the trigger() function. However, the TSC register value determined from
the interrupt handler represents the start value for the measurement. After returning
to the interrupted task the second TSC register value is ascertained. Thus, the
measurement includes the time between exiting the interrupt handler and continuing

63

Chapter 5. Evaluating (POSIX) Real-Time Operating Systems

Figure 5.9.: Interrupt latency benchmark test

the previously interrupted task.

Figure 5.10.: Interrupt dispatch latency benchmark test

The test for the interrupt to task latency measurement as shown in Figure 5.11
requires a second level interrupt handler. Since the procedure for installing a SLIH
strongly depends on the operating system used, details for SLIH are nor discussed here.
Similar to the interrupt tests introduced above an interrupt is generated by calling
the trigger() function. The task that triggered the interrupt is preempted by the
handler. After a high level interrupt handler has treated the interrupt a SLIH task is
scheduled. Inside the SLIH the current value of the TSC register is determined. This
value represents the measurement together with the TSC register value determined
before the interrupt was triggered. The measurement includes the time that is needed
for a switch to the SLIH task.

Depending on the operating system different strategies have to be implemented for
transferring measurement data between interrupt handler and benchmark task. In a
QNX system a global variable can be used to share values from inside an interrupt
handler and the benchmark task. In a Linux based system the proc interface is used.

64

5.4. Benchmark Test Framework

Figure 5.11.: Interrupt to task latency benchmark test

The actual implementation is explained in the chapters assigned to the operating
systems.

65

6
Case Study 1: RT-Preempt Patch

The first detailed operating system analyses in this thesis refers to the RT-Preempt
Linux extension. We will discuss the main contributions of the patch and analyse
how real-time behaviour is achieved (see Section 3.6.2). Later in this chapter the
implementation of the benchmark tests introduced in Section 5.4.3 for the RT-Preempt
Linux system will be explained.

6.1. Background and Overview

The RT-Preempt extension for Linux was introduced by Ingo Molnar and Thomas
Gleixner and is maintained by a small group of core developers. This extension allows
many parts of the kernel to be preempted, with the exception of some regions of code.
This is done by moving interrupts and software interrupts to kernel threads, as well
as replacing most kernel spin-locks with mutexes that support priority inheritance.
The key point of the extension is to minimize the amount of kernel code that is non-
preemptible. In particular, critical sections and interrupt handlers are preemptible in
a RT-Preempt Linux kernel. Real-time support is activated in the Kernel by setting
few parameters. After configuration, the kernel can be compiled and installed as
usual.

CONFIG_PREEMPT = y enables non-critical-section kernel preemption.

CONFIG_PREEMPT_RT = y enables full preemption, including critical sections. This
option also enables: CONFIG_PREEMPT_SOFTIRQS, CONFIG_PREEMPT_HARDIRQS,
and CONFIG_PREEMPT_RCU

CONFIG_HIGH_RES_TIMERS = y enables the High-Resolution-Timer option.

CONFIG_ACPI = n disables all power management options like ACPI or APM.

The RT-Preempt extension has raised quite some interest throughout the industry.
This is mainly based on the contemporary availability of the extension for new Kernel
versions. Furthermore, the extension can be integrated almost seamlessly into the
Kernel. Real-time tasks make use of the standard Posix API. The extension only
has impact on the kernel, userspace tasks do not notice the difference. However,

67

Chapter 6. Case Study 1: RT-Preempt Patch

important things to keep in mind while writing realtime applications for the RT-
Preempt extension are discussed in Section 6.4. Some techniques that were previously
part of the RT-Preempt extension have been inherited by the mainstream kernel. So,
the Linux timer API was separated into infrastructures for high resolution timers and
timeouts, leading to user space POSIX timers with high resolution.

The RT-Preempt extension for Linux arrives as a patch that can be applied to
the mainline kernel and is available for various kernel versions. The version of the
patch on which this examination is based affects 652 files of the kernel source tree.
Since many architectures included in the Linux kernel are supported by the patch, the
number of changes in the architecture dependent files is quite high. While applying
the patch 228 files are touched in the kernel arch source tree. 86 files among them
belong to the x86 (x86_64) architecture. Another big block of 186 changed files
concerns drivers, filesystems and network depended code. In the following, the main
focus is on the core kernel sections, such as scheduling and timing.

6.2. Preemptable In-Kernel Locking Primitives

The real-time patch converts most spin-locks in the system to mutexes. This reduces
overall latency at the expense of slightly reduced throughput. The benefit of converting
spin-locks to mutexes is that they can be preempted. When a task successfully acquires
a spin-lock in a normal unpatched kernel, preemption is disabled and the task that ac-
quired the spin-lock is allowed to enter the critical section. No task switches can occur
until a spin_unlock() operation takes place. The spin_lock() function is actu-
ally a macro that has several forms, depending on the kernel configuration. They are
defined at the architecture-independent top level definitions in linux/spinlock.h.
When the kernel is patched with the RT-Preempt patch, these spin-locks are promoted
to mutexes to allow preemption of higher-priority processes when a spin-lock is held .

#define spin_lock(lock) rt_spin_lock(lock)spinlock.h

static void noinline __schedrtmutex.c

rt_spin_lock_slowlock(struct rt_mutex *lock)

{

...

atomic_spin_lock_irqsave(&lock->wait_lock, flags);

...

saved_state = rt_set_current_blocked_state(current->state);

for (;;) {

int saved_lock_depth = current->lock_depth;

/* Try to acquire the lock */

if (do_try_to_take_rt_mutex(lock, STEAL_LATERAL))

break;
...

if (!waiter.task) {

task_blocks_on_rt_mutex(lock, &waiter, current,0,

68

6.2. Preemptable In-Kernel Locking Primitives

flags);

...

}

...

atomic_spin_unlock_irqrestore(&lock->wait_lock, flags);

...

if (adaptive_wait(&waiter, orig_owner)) {

put_task_struct(orig_owner);

if (waiter.task)

schedule_rt_mutex(lock);

} else
put_task_struct(orig_owner);

atomic_spin_lock_irqsave(&lock->wait_lock, flags);

...

}

rt_restore_current_state(saved_state);

...

atomic_spin_unlock_irqrestore(&lock->wait_lock, flags);

...

}

void __lockfunc rt_spin_lock(spinlock_t *lock)

{

rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock);

spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);

}

Listing 6.1: RT-Preempt spin_lock()

Listing 6.1 shows the definition of the spin_lock() macro for a RT-Preempt
patched kernel. The call to rt_spin_lock_fastlock(..., f()) in rt_spin_-
lock() intercepts some error states and continues with calling the committed function
f() (rt_spin_lock_slowlock()). Spin-locks in the normal Linux kernel are
realised with busy waiting. The method avoids context switches that can be very time
consuming. The locking task runs continually until the lock is acquired. Generally, a
spin-lock should be held for a short amount of time because the waiters for the lock
will be using CPU time. Blocking and preemption are illegal while holding a lock.
A spin-lock inside a RT-Preempt kernel is implemented as a mutex (Listing 6.1). It
causes waiters to sleep if the lock is held by a different task. With this it is possible
(and valid) for a task to be suspended inside the spin-lock. Mutex based spin-locks
can be acquired in some contexts inside a RT-Preempt patched kernel where blocking
operations are not allowed in normal Linux.

+ A mutex can be acquired in a preemptable RCU read section.

+ A mutex can be acquired in most interrupt handlers and softirqs because these
sections occur in thread context.1

1See Section 6.3 for details.

69

Chapter 6. Case Study 1: RT-Preempt Patch

– A mutex cannot be used in interrupt context and must not be in atomic paths.

Critical sections protected by spinlock_t (respectively rwlock_t) objects are
now preemptible. The creation of non-preemptible sections is still possible with
the raw_spinlock_t type. Most normal kernel spin-locks are converted into RT-
Preempt spin-locks. raw_spinlock_t should only be used for scheduler code, mutex
implementation and for low level interrupt handlers (e.g. timer).

6.2.1. Priority Inheritance for In-Kernel Locking Primitives

Both methods, busy waiting spin-lock and real-time mutex, ensure that only one
execution path enters a critical section. If a task tries to enter an already occupied
section, it will be suspended (or blocked) until the task that has previously locked
the section releases it. Since tasks which have locked a section using a mutex are
preemptible a problem arises that is commonly known as priority inversion (Figure 6.1
a).

• Low-priority task 1 acquires a mutex.

• High-priority task 3 attempts to acquire the lock held by low-priority task 1 and
blocks.

• Medium-priority task 2 starts executing and preempts low-priority task 1.

In the situation described above, medium-priority task 2 is executed before high-
priority task 3. This violates the priority model that tasks can only be prevented
from running by higher priority tasks (and briefly by low priority tasks which will
quickly complete their use of a resource shared by the high and low priority tasks).
Such priority inversion can indefinitely delay a high-priority task. There are two main
ways to address this problem.

Suppressing preemption In this case, since there is no preemption, task 2 cannot
preempt task 1, preventing priority inversion from occurring.

Priority inheritance High-priority task 3 temporarily donates its high priority to
lower-priority task 1 that is holding the critical lock (Figure 6.1 b).

Priority inheritance is transitive. In the example above, if an even higher priority
task 4 attempted to acquire a second lock that high-priority task 3 was already holding,
then both tasks 3 and 1 would be temporarily boosted to the priority of task 4.

It may take some time for task 3 to run, and it is quite possible that another
higher-priority task 5 will try to acquire the lock in the meantime. If this happens,
task 5 will steal the lock from task 3, which is legal because task 3 has not yet run,
and has therefore not actually acquired the lock. On the other hand, if task 3 gets
to run before task 5 tries to acquire the lock, then task 5 will be unable to steal the
lock, and must instead wait for task 3 to release it. So, the priority of task 3 will be
boosted to the level of the priority of task 5 in order to expedite matters.

70

6.2. Preemptable In-Kernel Locking Primitives

Prio

Real Time

Task 3

Task 2

Task 1

�

� �

Mutex

(a) (b)

Figure 6.1.: Priority inversion

In the RT-Preempt extension implementation of priority inheritance the priority of
a task is raised by a new task that tries to get a lock. The task that holds the lock gets
the priority of the new task. This is done inside task_blocks_on_rt_mutex()
which is called from rt_spin_lock_slowlock (Listing 6.1). After releasing the
lock the previously boosted task falls back to its normal priority level (Listing 6.2). In
both cases rt_mutex_adjust_prio() is responsible for changing the task priority.
The details of the implementation are not shown here, since they are not of importance
for the understanding of the RT-Preempt extension realisation of priority inheritance.

tatic void noinline __sched rtmutex.c

rt_spin_lock_slowunlock(struct rt_mutex *lock)

{

...

atomic_spin_lock_irqsave(&lock->wait_lock, flags);

...

wakeup_next_waiter(lock, 1);

...

atomic_spin_unlock_irqrestore(&lock->wait_lock, flags);

/* Undo pi boosting.when necessary */

rt_mutex_adjust_prio(current);

}

Listing 6.2: RT-Preempt spin_unlock()

In a scenario with read/write locks it turns out that priority inheritance is partic-
ularly problematic. In such a situation a lock can be held by more than one task
(reader) at a time. Since priority inheritance is transitive numerous tasks can be
involved in this situation. To change and unchange the priorities of all these tasks can
cause a indeterminate latency impact on the scheduling behavior. The RT-Preempt
extension simplifies the problem by permitting only one task at a time to read-hold
a read/write lock. Listing 6.3 shows that read/write locks with the RT-Preempt
extension are implemented as rt-spin-locks (mutex) internally. Also see [RH07] for
further information on read/write locks inside the RT-Preempt Linux extension.

#define write_lock(lock) rt_write_lock(lock) rwlock.h

71

Chapter 6. Case Study 1: RT-Preempt Patch

#define read_lock(lock) rt_read_lock(lock)

void __lockfunc rt_write_lock(rwlock_t *rwlock)rt.c

{

rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_);

__rt_spin_lock(&rwlock->lock);

}

void __lockfunc rt_read_lock(rwlock_t *rwlock)

{

struct rt_mutex *lock = &rwlock->lock;

rwlock_acquire_read(&rwlock->dep_map, 0, 0, _RET_IP_);

...

if (rt_mutex_real_owner(lock) != current)

__rt_spin_lock(lock);

rwlock->read_depth++;

}

void __lockfunc __rt_spin_lock(struct rt_mutex *lock)rtmutex.c

{

rt_spin_lock_fastlock(lock, rt_spin_lock_slowlock);

}

Listing 6.3: RT-Preempt rw_lock()

6.3. Interrupt Handlers as Kernel Threads

With the RT-Preempt extension many interrupt handlers run in task context. This
threaded handlers have (like other tasks) a priority level and are thus integrated into
the Linux task scheduling. It is now possible for a normal real-time tasks to run
with higher priority than interrupt handlers . Therefore, most interrupt handlers are
preemptible. Figure 6.2 shows the scheduling hierarchy in the RT-Preempt extension
Linux.

Not all handlers can be delayed. Some interrupts like for instance per-CPU timer
interrupts have to be treated immediately. There is still the need for such handlers
to be executed in hardware-interrupt context. For this reason interrupts are devided
into two categories :

IRQ_NODELAY Interrupts marked with the IRQ_NODELAY flag are caused to run in
hardware-interrupt context (ISR). In the standard RT-Preempt extension configura-
tion, only per-CPU timer interrupts (scheduler tick) and floating-point co-processor
interrupts have this flag specified. In this category the preemptable spin-locks must
not be used for synchronization, since hardware-interrupts are not preemptible. The
raw_spinlock_t type can be used for mutual exclusion instead.

A Linux kernel module (e.g. driver) can register a new interrupt service routine
(ISR) that is forced to be executed in hardware-interrupt context by passing

72

6.3. Interrupt Handlers as Kernel Threads

Priority ISR

Real-Time (FIFO/RR)

Normal Tasks (CFS)

Batch Tasks

Idle Task

High Prio

Interrupt Thread

Low Prio

kworker Thread

Figure 6.2.: RT-Preempt scheduling hierarchy

the IRQ_NODELAY flag. Both, interrupt and scheduling latencies can be greatly
degraded with the increased occurance of non preemptible interrupts.

The implementation of IRQ_NODELAY interrupt handlers and code sequences
interacting with such handlers need to follow some special rules. Code that must
interact with IRQ_NODELAY interrupts cannot use local_irq_save(), since
this does not disable hardware interrupts in the RT-Preempt extension. Instead,
raw_local_irq_save() should be used. Similarly, raw spin-locks need to be
used when interacting with IRQ_NODELAY interrupt handlers.

Virtualized A virtualized interrupt is split into a hardware-interrupt and a threaded
part. The actual service routine (ISR) is evacuated to a handler task. Like mentioned
before this interrupt task is preemptible. The hardware part is responsible for
storing the interrupt in a queue and activating the handler task. When the handler
task is scheduled each ISR in the queue is processed. A real-time task with a higher
priority level than the handler task can preempt the processing of the ISR queue.

To handle races with interrupt handlers a threaded interrupt can be delegated to
another CPU in the system. Any code that interacts with an interrupt handler
must be prepared to deal with that interrupt handler running concurrently on some
other CPU.

The standard Linux API provides request_irq() for introducing interrupt
handlers. It is actually a wrapper to request_threaded_irq() which supports
the concept of threaded interrupt handlers already. However, almost all drivers in the
Kernel use request_irq() for requesting hardware-interrupts. Detailed information
about how interrupts are treated in the Linux kernel can be found at [BC05, Chap.
4]. In general, the handler function is invoked in hardware-interrupt context and tells
the Linux framework either to wake up the associated interrupt task or not. The
interrupt task calls the thread function to finish the interrupt handling.

73

Chapter 6. Case Study 1: RT-Preempt Patch

Listing 6.4 outlines the process of registering an interrupt handler. The reference to
thread_fn is NULL if a new handler is registered with the request_irq() method.
This causes preempt_hardirq_setup() to define the thread function to be the
handler function if the IRQ_NODELAY flag is not set. The handler function is replaced
by the standard handler function which just returns with IRQ_WAKE_THREAD.

static inline int __must_checkinterrupt.h

request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,

const char *name, void *dev)

{

return request_threaded_irq(irq, handler, NULL, flags, name,dev);

}

int request_threaded_irq(unsigned int irq, irq_handler_t handler,manage.c

irq_handler_t thread_fn, unsigned long irqflags,

const char *devname, void *dev_id)

{

...

action->handler = handler;

action->thread_fn = thread_fn;

action->flags = irqflags;

...

retval = __setup_irq(irq, desc, action);

...

}

static int
__setup_irq(unsigned int irq,struct irq_desc *desc,struct irqaction *new)

{

...

/* Preempt-RT setup for forced threading */

preempt_hardirq_setup(new);

...

if (new->thread_fn && !nested) {

struct task_struct *t;

t = kthread_create(irq_thread, new, "irq/%d-%s", irq,

new->name);

...

new->thread = t;

}

}

static void preempt_hardirq_setup(struct irqaction *new)

{

if (new->thread_fn || (new->flags &(IRQF_NODELAY | IRQF_PERCPU)))

return;

new->flags |= IRQF_ONESHOT;

new->thread_fn = new->handler;

new->handler = irq_default_primary_handler;

74

6.4. Real-Time Application Programming

}

Listing 6.4: RT-Preempt interrupt request

An interrupt will be handled in task context, if the handler is registered with a call
to request_irq() and the IRQ_NODELAY flag is not set. The new task is created in
__setup_irq() if necessary and runs at a priority level of MAX_USER_RT_PRIO

2 .
In combination with the RT-Preempt spin-lock implementation interrupt handlers are
fully preemptable.

6.4. Real-Time Application Programming

No special API is required in the RT-Preempt extension. Real-time tasks make use of
the standard Posix API. The RT-Preempt internet presence2 mentions some important
things to keep in mind while writing real-time applications:

• A real-time application uses the SCHED_RR or the SCHED_FIFO scheduling policy.

• A call to mlockall() is requiered as soon as possible in order to lock the calling
process’s virtual address space into RAM and preventing that memory from being
paged to the swap area.

• All threads should be created at the startup time of the application. Creating
threads during rel-time execution will ruin the real-time behavior.

• Each memory page of the entire stack of each thread should be touched as soon as
possible (after calling mlockall()) in order to cause a stack fault at a determined
time.

• A real-time application should not run on the highest priority level since there
are a few management threads which need to run with higher priority then the
application.

• When the system is fulfilling its real-time requirements the VGA text console must
be left untouched. Nothing is allowed to be written to that console. (Using a
graphical interface based on the X window system has no impact on the real-time
behavior.)

Example applications can be seen in Section 6.5.

6.5. Benchmarking

The benchmark tests described in Section 5.4.3 are going to be discussed in this section
in concrete implementation for the Linux 3.4.104 kernel. Since the API for a kernel
with RT-Preempt extension does not differ from the standard kernel, the implemented

2https://rt.wiki.kernel.org

75

Chapter 6. Case Study 1: RT-Preempt Patch

tests are executable for both kernels. The presented values in this section are the
results from executing the same tests for a patched and a non-patched kernel. This
makes it easy to see the impact of the RT-Preempt extension. In Chapter 12 the
benchmark results are compared and evaluated to other real-time operating systems.
All benchmark results can be accessed at http://www.informatik.uni-bremen.
de/agbs/dirkr/HRTL/benchmark_results.tgz.

Listing 6.5 shows the main setup for a real-time process in the RT-Preempt extension
operating system. Each task calls this function (in a slightly modified version with
respect to the process priority) to become a real-time task.

int setup(void) {period_....c

cpu_set_t set;

struct sched_param schedp = { .sched_priority = RT_PRIO };

CPU_ZERO(&set);

CPU_SET(BENCHMARK_CPU, &set);

/* declare as a real time task */

if (0 > sched_setscheduler(0, SCHED_FIFO, &schedp)) {

...

/* lock CPU */

if (0 > sched_setaffinity(0, sizeof(cpu_set_t), &set)) {

...

/* lock memory */

if (0 > mlockall(MCL_CURRENT | MCL_FUTURE)) {

...

}

Listing 6.5: RT-Preempt benchmark test setup

As mentioned in Section 5.4.1 a task has to arrange some sort of affinity to a
certain CPU in order to keep the TSC register values comparable. This is done
by calling sched_setaffinity() with a prepared cpu_set_t variable. Further,
this real-time task determines its scheduling policy to be SCHED_FIFO and locks its
memory by calling mlockall().

6.5.1. Task Period Tests

The periodic task benchmark test is presented in Listing 6.6. As can be seen, the
setup function (Listing 6.5) is called early in the main function. The parallel port
initialisation takes place before calling setup() and is not shown in the listing. The
memory area for the measurement results (tsc[]) is touched before executing the
main loop. As described in Section 6.4 this is necessary to cause a stack fault before
the test starts.

int main(int argc, char **argv) {period_....c

uint32_t tsc[LOOP_COUNT];

...

if (0 > setup())

exit(EXIT_FAILURE);

76

6.5. Benchmarking

/* pre-fault stack */

for (i = 0; i < LOOP_COUNT; i++)

rdtsc_32(tsc[i]);

if (0 > start_timer(atoi(argv[1]), atoi(argv[2])))

exit(EXIT_FAILURE);

/* benchmark */

for (i = 0; i < LOOP_COUNT; i++) {

select(0, NULL, NULL, NULL, NULL);

rdtscp_32(tsc[i]);

cpuid();

#ifdef TRIGGER_PARPORT

parport_toggle();

#else
busy();

#endif
}

...

}

int start_timer(unsigned int runtime_sec, unsigned int runtime_us) {

struct itimerval ival = {

.it_interval = { .tv_sec = runtime_sec, .tv_usec = runtime_us},

.it_value = { .tv_sec = runtime_sec, .tv_usec = runtime_us}

};

if (0 > setitimer(ITIMER_REAL, &ival, NULL)) {

...

}

Listing 6.6: RT-Preempt period task benchmark test

In the test the periodic task behavior is realised by using an interval timer,
programmed with setitimer(). Upon expiration of the programmed timer, a
SIGALRM signal will be generated. The signal will be delivered immediately when
generated. The appropriated select() system call in the main loop blocks until
the signal is received by the process. This signal is captured in a signal handler and
indicates the start of a new period.

The first benchmark test for the RT-Preempt extension operating system measures
the scheduling precision of a periodic task with a timer of 500 μs (Table 6.1). The
test was executed in the 3 scenarios described in Section 5.3.

As one can see the precision of the 500 μs timer is almost met. The introduced
measurement details in Section 5.4.1 explain the acquisition of the time values. Results
in the table were converted to the μs unit. The translation caused some inaccuracy in
the precision of the values due to rounding errors.

Compared with the results of the same benchmark test on a native Linux kernel
system (Table 6.2) it is easy to see, that the patch brings a higher precision for a small
timer to the Linux operating system. Like mentioned before the test was executed

77

Chapter 6. Case Study 1: RT-Preempt Patch

Scenario Average Min Max Gap Deviation

Normal 499.931 498.245 501.202 2.957 0.969

CPU utilization 499.952 497.342 502.438 5.096 1.125

I/O utilization 499.919 495.025 505.939 10.914 1.198

Table 6.1.: Benchmark test results [μs]: RT-Preempt period task (500μs)

with the same kernel without applying the RT-Preempt patch.

Scenario Average Min Max Gap Deviation

Normal 499.968 492.642 505.692 13.050 1.882

CPU utilization 499.954 476.227 524.673 48.446 2.748

I/O utilization 499.978 491.964 508.623 16.659 2.250

Table 6.2.: Benchmark test results [μs]: Linux 3.4.104 period task (500μs)

Table 6.3 and Table 6.4 show the results of the periodic benchmark test with a 20
times larger timer. In the CPU and I/O utilization scenarios the RT-Preempt system
loses some accuracy with a 10 ms timer.

Scenario Average Min Max Gap Deviation

Normal 9998.973 9994.927 10003.621 8.694 0.681

CPU utilization 9999.048 9990.908 10005.985 15.076 2.142

I/O utilization 9999.041 9988.103 10010.922 22.820 1.722

Table 6.3.: Benchmark test results [μs]: RT-Preempt period task (10ms)

Scenario Average Min Max Gap Deviation

Normal 9999.043 9994.372 10004.310 9.938 1.523

CPU utilization 9999.083 9931.113 10077.274 146.161 12.243

I/O utilization 9999.041 9988.460 10009.622 21.161 3.551

Table 6.4.: Benchmark test results [μs]: Linux 3.4.104 period task (10ms)

The same test is repeated with a 100 ms (Table 6.5 and Table 6.6) and a 1 second
timer (Table 6.7 and Table 6.8). Nevertheless, the test is only executed in the normal
scenario. What is striking is the continuous loss of precision in the RT-Preempt
system with increasing timer values. In contrast, the normal Linux kernel gains some
accuracy with higher timer values.

78

6.5. Benchmarking

Scenario Average Min Max Gap Deviation

Normal 99990.428 99983.862 99997.116 13.253 2.187

Table 6.5.: Benchmark test results [μs]: RT-Preempt period task (100ms)

Scenario Average Min Max Gap Deviation

Normal 99990.394 99985.707 99995.328 9.621 0.876

Table 6.6.: Benchmark test results [μs]: Linux 3.4.104 period task (100ms)

Scenario Average Min Max Gap Deviation

Normal 999903.946 999899.019 999909.010 9.991 2.526

Table 6.7.: Benchmark test results [μs]: RT-Preempt period task (1sec)

Scenario Average Min Max Gap Deviation

Normal 999903.939 999898.414 999908.540 10.126 1.163

Table 6.8.: Benchmark test results [μs]: Linux 3.4.104 period task (1sec)

6.5.2. Task Switch Tests

As described in Section 5.2.1 two different tests for measuring task switch latency are
implemented. Like before in the periodic task benchmarking these tests are performed
in the described scenarios for a native Linux kernel and a RT-Preempt system.

Listing 6.7 shows the implementation of the startup routine for the task preemption
latency benchmark test. Two semaphores (SEM_FORK and SEM_WAIT) are used as
events for synchronising the start of the test. Since, actually three different processes
are involved in test executing, the results are stored in a shared memory segment.
The initialisation of the semaphores and the shared memory segment are not shown
in the listing.

int main(void) {
switch_...signal.c

...

struct sched_param schedp = { .sched_priority = RT_PRIO -2};

...

if (0 > setup(RT_PRIO +1))

exit(EXIT_FAILURE);

...

if (0 == (high = fork())) {

if (0 > setup(RT_PRIO))

exit(EXIT_FAILURE);

task_high(1);

} else
semop(sem_id, &sem_op_fork, 1);

79

Chapter 6. Case Study 1: RT-Preempt Patch

semctl(sem_id, SEM_FORK, SETVAL, 1);

if (0 == fork()) {

if (0 > setup(RT_PRIO -1))

exit(EXIT_FAILURE);

task_low(0, high);

} else
semop(sem_id, &sem_op_fork, 1);

semop(sem_id, &sem_op_wait, 1);

sched_setparam(0, &schedp);

...

}

Listing 6.7: RT-Preempt task preemption benchmark test startup

Two processes are forked during test startup. Each created process calls the
setup() function at first. The process related startup routines are shown later in
this section. One of the semaphores (SEM_FORK) is used here to let the main process
block until the new created process finishes its own setup phase. After both processes
have finished their startup the main process fires the second event (SEM_WAIT) and
lowers its priority level. Both forked processes have higher priority than the main
process now. If they terminate, the main process comes back to life and finishes the
benchmark test by printing the results.

The main test takes place between the newly created processes.3 Listing 6.8 shows
the main routines for both tasks. After performing the startup synchronisation as
mentioned above (semaphores SEM_FORK and SEM_WAIT), the benchmark test starts
with entering the for loop. The POSIX signal mechanism, which is implemented in
the Linux operating system, is used for triggering the higher priority task. task_low
sends a signal (SIGALRM) to task_high with the kill() system call for waking
up that task. task_high previously blocked on the pause() system call which
causes the calling process to sleep until a signal is delivered that causes the invocation
of a signal-catching function.

void task_low(int idx, pid_t high) {
switch_...signal.c

...

for (i = 0; i < LOOP_COUNT; i++)

rdtsc_32(tsc[i]);

semop(sem_id, &sem_op_fork, 1);

semop(sem_id, &sem_op_wait, 1);

for (i = 0; i < LOOP_COUNT; i++) {

busy_long();

cpuid();

rdtsc_32(tsc[i]);

kill(high, SIGALRM);

}

3See Section 5.4.3.2 for further explanation.

80

6.5. Benchmarking

...

if (NULL == (res = shmat(shm_id, 0, 0))) {

...

}

for (i = 0; i < LOOP_COUNT; i++)

res->tsc[idx][i] = tsc[i];

...

}

void task_high(int idx) {

...

for (i = 0; i < LOOP_COUNT; i++)

rdtsc_32(tsc[i]);

signal(SIGALRM, task_high_sighandler);

semop(sem_id, &sem_op_fork, 1);

semop(sem_id, &sem_op_wait, 1);

for (i = 0; i < LOOP_COUNT; i++) {

busy_long();

pause();

rdtscp_32(tsc[i]);

cpuid();

}

if (NULL == (res = shmat(shm_id, 0, 0))) {

...

}

for (i = 0; i < LOOP_COUNT; i++)

res->tsc[idx][i] = tsc[i];

...

}

Listing 6.8: RT-Preempt task preemption benchmark test

The benchmark test was executed in the 3 scenarios described in Section 5.3.
Table 6.9 and Table 6.10 show the results of the test. As one can see the RT-Preempt
extension slows down the preemption of a task by a factor of 2.5 compared to a native
Linux kernel.

Scenario Average Min Max Gap Deviation

Normal 4.699 4.620 8.084 3.463 0.222

CPU utilization 4.728 4.665 8.639 3.973 0.253

I/O utilization 4.776 4.653 8.900 4.248 0.276

Table 6.9.: Benchmark test results [μs]: RT-Preempt preempt task (signal)

The second benchmark test for measuring the task switch latency in a RT-Preempt
extension kernel is also described in Section 5.4.3.2. To simplify the complexity of

81

Chapter 6. Case Study 1: RT-Preempt Patch

Scenario Average Min Max Gap Deviation

Normal 1.538 1.501 1.709 0.208 0.026

CPU utilization 1.543 1.491 1.737 0.245 0.025

I/O utilization 1.506 1.486 1.641 0.155 0.023

Table 6.10.: Benchmark test results [μs]: Linux 3.4.104 preempt task (signal)

the program, the arrangement of the shared memory segment is slightly more tricky
compared to the task preemption benchmark test above. Because up to 512 processes
are involved in test execution, the process ID is stored together with each measurement
value to make the printed results more expressive. Listing 6.9 shows the data structure
for the shared memory segment.

struct tsc_tab_entry {switch_same....c

pid_t pid;

uint32_t tsc;

};

struct tsc_tab {

unsigned int idx_start;

unsigned int idx_stop;

struct tsc_tab_entry start[LOOP_COUNT];

struct tsc_tab_entry stop[LOOP_COUNT];

};

void tsc_tab_init(struct tsc_tab *tab) {

tab->idx_start = 1;

tab->idx_stop = 0;

}

Listing 6.9: RT-Preempt task switch benchmark test data structure

Each process that is part of the benchmark test stores two values in the table
within each iteration of the test main loop (Listing 6.10). The following functions are
provided for manipulating values in the table:

tsc_tab_write_start(..., int idx, ...) Write the given value to the
start table at the position marked by idx.

tsc_tab_write_stop() Write the given value to the stop table. The index for
the stop table is incremented by 1 afterwards.

tsc_tab_get_start_idx() Get the next index for the start table. The index
for the start table is incremented by 1 afterwards. If the end of the table is
reached, -1 is returned and the calling process will terminate (Listing 6.10).

Inside the test main loop, the process reserves an index for the table by calling
tsc_tab_get_start_idx(). In the next turn the benchmark values are stored

82

6.5. Benchmarking

locally in the process memory stack. In the section afterwards the previously stored
values are transmitted to the table by using the reserved start index outside the time
tracking. The actual task switch is invoked by calling the sched_yield() system
call.

void task(void) { switch_same....c

...

do {

busy_long();

cpuid();

rdtsc_32(tsc_start);

sched_yield();

rdtscp_32(tsc_stop);

cpuid();

if (-1 != idx)

tsc_tab_write_start(res, idx, pid, tsc_start);

tsc_tab_write_stop(res, pid, tsc_stop);

idx = tsc_tab_get_start_idx(res);

} while (-1 != idx);

...

}

Listing 6.10: RT-Preempt task switch benchmark test

The test startup is almost the same as for the task preemption benchmark test
before. Details are not printed here. All processes needed for the test execution
are forked within the main process and use the same synchronisation mechanism
(semaphores as events).

Table 6.11 and Table 6.12 present the results of the task switch latency benchmark
test on a RT-Preempt extension kernel respectively native Linux kernel with two
alternating processes. The time required for a task switch is slightly higher in the
RT-Preempt extension kernel. However, the smaller deviation value shows a minimal
better reproducibility.

Scenario Average Min Max Gap Deviation

Normal 0.617 0.607 0.634 0.027 0.004

CPU utilization 0.616 0.605 0.658 0.052 0.007

I/O utilization 0.623 0.602 0.640 0.037 0.004

Table 6.11.: Benchmark test results [μs]: RT-Preempt switch task (2 tasks)

The same test was repeated with 16 (Table 6.13 and Table 6.14), 128 (Table 6.15
and Table 6.16) and 512 (Table 6.17 and Table 6.18) switching processes. The time
required for a task switch increases with more involved processes.

83

Chapter 6. Case Study 1: RT-Preempt Patch

Scenario Average Min Max Gap Deviation

Normal 0.453 0.450 0.498 0.048 0.006

CPU utilization 0.461 0.451 0.510 0.059 0.006

I/O utilization 0.460 0.449 0.492 0.043 0.008

Table 6.12.: Benchmark test results [μs]: Linux 3.4.104 switch task (2 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.698 0.659 0.752 0.093 0.016

Table 6.13.: Benchmark test results [μs]: RT-Preempt switch task (16 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.571 0.520 0.615 0.095 0.015

Table 6.14.: Benchmark test results [μs]: Linux 3.4.104 switch task (16 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.910 0.828 1.068 0.240 0.037

Table 6.15.: Benchmark test results [μs]: RT-Preempt switch task (128 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.776 0.708 0.891 0.183 0.027

Table 6.16.: Benchmark test results [μs]: Linux 3.4.104 switch task (128 tasks)

Scenario Average Min Max Gap Deviation

Normal 1.309 1.073 1.769 0.695 0.114

Table 6.17.: Benchmark test results [μs]: RT-Preempt switch task (512 tasks)

Scenario Average Min Max Gap Deviation

Normal 1.257 0.936 1.622 0.686 0.126

Table 6.18.: Benchmark test results [μs]: Linux 3.4.104 switch task (512 tasks)

6.5.3. Task Creation Test

The time it takes for creating a new process is measured by the task creation benchmark
test. According to the description in Section 5.4.3.3 a new task is spawned in each test
step within the test main loop by calling the fork() system call. Time is measured
immediately before and after (in the new process) invoking fork(). To transfer the

84

6.5. Benchmarking

second measurement value to the main process a shared memory segment is used.
Listing 6.11 shows the implementation of the task creation benchmark test for the
RT-Preempt extension operating system. The startup procedure is not shown in
the listing, since there are no new steps to be introduced. All necessary preparation
steps for the test execution were introduced before with the explanations of the other
benchmark tests.

int main(void) { fork_same_prio.c

...

for (i = 0; i < LOOP_COUNT; i++) {

res->start[i].pid = pid;

cpuid();

rdtsc_32(res->start[i].tsc);

if (0 == fork()) {

rdtscp_32(res->stop[i].tsc);

cpuid();

res->stop[i].pid = getpid();

exit(EXIT_SUCCESS);

}

...

}

...

}

Listing 6.11: RT-Preempt task creation benchmark test

In a Linux system (and RT-Preempt extension kernel) a newly created process
inherits the priority level and the scheduling policy of the parent process. The new
process is an exact duplicate of the calling process except some points that are not
discussed here. Subsequently the created process is put at the start of the FIFO
run-queue within the kernel.4 Therefore, the new created process will preempt the
currently running process (parent).

The results of the task creation benchmark test are shown in Table 6.19 and
Table 6.20. There are no significant differences between the results of a RT-Preempt
extension kernel and a native Linux kernel.

Scenario Average Min Max Gap Deviation

Normal 35.031 29.954 39.254 9.300 2.228

CPU utilization 37.148 31.011 39.269 8.259 1.478

I/O utilization 35.269 30.640 39.264 8.624 2.253

Table 6.19.: Benchmark test results [μs]: RT-Preempt task creation

4The POSIX standard specifies that the thread should go to the end of the list.

85

Chapter 6. Case Study 1: RT-Preempt Patch

Scenario Average Min Max Gap Deviation

Normal 33.482 29.731 35.695 5.964 1.480

CPU utilization 35.282 30.205 39.198 8.993 2.294

I/O utilization 33.892 30.595 35.707 5.112 1.121

Table 6.20.: Benchmark test results [μs]: Linux 3.4.104 task creation

6.5.4. Interrupt Tests

The implementation of the three interrupt benchmark tests as described in Sec-
tion 5.4.3.4 are explained in this section. For the realisation of the tests, it is necessary
to enhance the kernel with two modules. These modules implement the interrupt
handlers that will be registered on the parallel port interrupt.

Interrupt latency, interrupt dispatch latency For these tests the interrupt han-
dler just captures the current value of the TSC register and returns. The handler is
shown in Listing 6.12.

static irqreturn_t irq_handler(int irq, void *__hw_irq)irq_benchmark.c

{

irqreturn_t result = IRQ_HANDLED;

rdtsc_32(tsc);

return result;

}

Listing 6.12: RT-Preempt interrupt benchmark test handler

Interrupt to task latency For this test the Linux tasklet mechanism is used. The
handler enqueues the tasklet with the occurrence of the interrupt and returns. The
kernel will schedule the tasklet kernel thread. Inside the tasklet the current value
of the TSC register is determined. Listing 6.13 shows the implementation of the
handler and the tasklet.

static irqreturn_t irq_handler(int irq, void *__hw_irq)irq_benchmark.c

{

irqreturn_t result = IRQ_HANDLED;

tasklet_schedule(&interrupt_latency_tasklet);

return result;

}

static void interrupt_latency_do_tasklet(unsigned long unused)

{

rdtscp_32(tsc);

cpuid();

}

Listing 6.13: RT-Preempt interrupt benchmark test tasklet handler

86

6.5. Benchmarking

Values between the main benchmark test and the measurements inside the interrupt
handler respective tasklet are transmitted via the proc interface. The initialisation
of the proc interface, the interrupt registration and the declaration of the tasklet
are not shown here. Both modules will create a file /proc/interrupt_latency.
A simple read on that file will return the result of the last measurement. It is
important for test execution to bind the interrupt treatment of the parallel port
interrupt to a certain CPU. This is done in the Linux system by writing a affinity
mask to /proc/irq/IRQ_NUMBER/smp_affinity.5 smp_affinity defines the
CPU cores that are allowed to execute the ISR for an interrupt. The value stored in
this file is a hexadecimal bit-mask representing all CPU cores in the system.

With the introduced interrupt handler, measuring the interrupt latency is quite
simple. Listing 6.14 shows the implementation of the interrupt latency benchmark
test main loop. The interrupt is triggered with the benchmark framework functions
parport_low() and parport_high().
int main(void) { interrupt_isr.c

...

for (i = 0; i < LOOP_COUNT; i++) {

...

parport_low();

busy();

cpuid();

rdtsc_32(res.start[i]);

parport_high();

do {

...

fscanf(fh, "%s\n", tmp);

res.stop[i] = strtoll(tmp, NULL, 10);

} while (old == res.stop[i]);

old = res.stop[i];

}

...

}

Listing 6.14: RT-Preempt interrupt latency benchmark test

The results of the benchmark test are shown in Table 6.21 and Table 6.22. Here
one can clearly see the impact of the RT-Preempt extension. The overall time for
handling a (threaded) interrupt in a RT-Preempt kernel is much longer compared to
a native Linux kernel, but under heavy I/O load the RT-Preempt extension enables
the kernel to react still within accurate time.

The interrupt dispatch latency benchmark test is similar to the interrupt latency
benchmark test except for the time measurement points. For this test the first value
is captured within the kernel. The second time value is gathered when returning from
interrupt. Listing 6.15 illustrates the interrupt dispatch latency benchmark test.
int main(void) { int...dispatch.c

5The IRQ_NUMBER for the parallel port interrupt is 7 for most systems.

87

Chapter 6. Case Study 1: RT-Preempt Patch

Scenario Average Min Max Gap Deviation

Normal 9.282 8.165 10.620 2.454 0.651

CPU utilization 9.321 8.184 11.238 3.054 0.657

I/O utilization 9.378 8.210 10.828 2.617 0.668

Table 6.21.: Benchmark test results [μs]: RT-Preempt interrupt latency (ISR)

Scenario Average Min Max Gap Deviation

Normal 4.558 3.190 5.921 2.731 0.693

CPU utilization 5.848 3.275 8.467 5.192 1.066

I/O utilization 4.931 3.227 55.150 51.923 3.602

Table 6.22.: Benchmark test results [μs]: Linux 3.4.104 interrupt latency (ISR)

...

for (i = 0; i < LOOP_COUNT; i++) {

busy();

parport_low();

busy();

parport_high();

do {

rewind(fh);

fscanf(fh, "%s\n", tmp);

res.start[i] = strtoll(tmp, NULL, 10);

} while (old == res.start[i]);

rdtscp_32(res.stop[i]);

cpuid();

old = res.start[i];

}

...

}

Listing 6.15: RT-Preempt interrupt dispatch latency benchmark test

One problem here is the slight delay when triggering the interrupt. For this reason
the test busy waits for the measurement value provided with the proc system file to
change. The test will be interrupted within this loop, but an additional comparison
for leaving the while loop takes place before the measurement is completed. Another
problem is that the file system layer is involved in the measurement. Since the same
test is executed here for both operating systems, the overhead of the read() system
call is negligible. This issue will be discussed in Chapter 12 again when comparing
the RT-Preempt extension with other operating systems.

The results of the interrupt dispatch latency benchmark test are provided in
Table 6.23 and Table 6.24.

88

6.6. Summary

Scenario Average Min Max Gap Deviation

Normal 6.573 5.505 7.498 1.993 0.678

CPU utilization 6.616 5.514 7.497 1.983 0.666

I/O utilization 6.625 5.520 7.499 1.979 0.682

Table 6.23.: Benchmark test results [μs]: RT-Preempt interrupt latency (dispatch)

Scenario Average Min Max Gap Deviation

Normal 1.950 1.166 3.111 1.945 0.445

CPU utilization 12.527 1.148 20.620 19.472 4.809

I/O utilization 1.889 1.084 4.679 3.595 0.530

Table 6.24.: Benchmark test results [μs]: Linux 3.4.104 interrupt latency (dispatch)

The interrupt to task latency benchmark test is identical to the interrupt latency
benchmark test and is not listed here. The results of the test are shown in Table 6.25
and Table 6.26. Again, the enrichment of the RT-Preempt extension can be seen in
the results for an I/O loaded system.

Scenario Average Min Max Gap Deviation

Normal 9.337 8.217 10.505 2.288 0.639

CPU utilization 9.392 8.170 10.499 2.329 0.649

I/O utilization 9.460 8.166 11.498 3.332 0.695

Table 6.25.: Benchmark test results [μs]: RT-Preempt interrupt latency (SLIH)

Scenario Average Min Max Gap Deviation

Normal 4.848 3.265 23.128 19.863 1.325

CPU utilization 7.546 5.061 13.107 8.046 1.099

I/O utilization 5.193 3.432 55.033 51.600 4.579

Table 6.26.: Benchmark test results [μs]: Linux 3.4.104 interrupt latency (SLIH)

6.6. Summary

The RT-Preempt Linux extension introduces some significant changes to the Linux
kernel. The fully preemptable design of the kernel makes it possible to satisfy the
period of a task with a failure in the range of microseconds. Later in Chapter 11
we will see how the approach of preemptible spin-locks is adapted by the operating

89

Chapter 6. Case Study 1: RT-Preempt Patch

system developed in this thesis.
Besides preemptible spin-locks the concept of threaded interrupt handlers represents

another major contribution to the normal Linux kernel. Since many aspects of the RT-
Preempt patch are already adapted by the native kernel, this concept is not completely
new. Together with other strategies discussed in the next chapters a threaded interrupt
handler model will be developed for the operating system introduced in Part III.

90

7
Case Study 2: HaRTLinC

In this chapter we will discuss the technical details of the HaRTLinC Linux extension.
Compared to the RT-Preempt patch (Chapter 6) the HaRTLinC system is pursuing
a different strategy to achieve real-time behavior (see Section 3.6.3). Later in this
chapter the implementation of the benchmark tests introduced in Section 5.4.3 for
the HaRTLinC Linux system will be explained.

7.1. Background and Overview

The HaRTLinC project (HLRT) was originally created as a student project at the
University of Bremen. It is an improvement of the Linux kernel modifications described
by Klaas-Henning Zweck in his diploma thesis Kernelbasierte Echtzeiterweiterung
eines Linux-Multiprozessor-Systems [Zwe02]. Zweck introduced a new scheduling
policy. A task using this scheduling policy runs on its own exclusively reserved CPU
and is not suspended by any hardware interrupts. Christof Efkemann developed
a Linux extension based on the HLRT project and released a patch for the kernel
with his diploma thesis Development and evaluation of a hard real-time scheduling
modification for Linux 2.6 [Efk05]. The main features of the HLRT extension are
a CPU reservation mechanism and a periodic scheduling mechanism. The first one
provides real-time scheduling for a task in a patched Linux system (Section 7.2). The
periodic scheduling mechanism provides periodic execution of tasks with fixed intervals
and detection of missed deadlines (Section 7.3).

After applying the HLRT patch to the kernel, real-time support is activated in the
Kernel by setting few parameters. After configuration, the kernel can be compiled
and installed as usual.

CONFIG_HLRT = y enables the HLRT extension features.

CONFIG_HLRT_NOROOT = y allows all users to use the HLRT scheduling policy.

CONFIG_HIGH_RES_TIMERS = n not supported by HLRT.1

CONFIG_ACPI = n disables all power management options like ACPI or APM.
1See the kernel configuration menu for the HLRT extension arch/x86/Kconfig.

91

Chapter 7. Case Study 2: HaRTLinC

The HLRT Linux extension is used and maintained by Verified Systems Interna-
tional2 for computer cluster based embedded systems testing. Unlike the RT-Preempt
extension (Chapter 6) real-time tasks in a HLRT system need to use a special API. The
API for the HLRT extension is provided with the patch and described in Section 7.4.

The HLRT extension for Linux arrives as a patch that can be applied to the mainline
Kernel. It is only available for the 32 bit x86 architecture. The patch affects 40 files
of the Kernel source tree.

7.2. CPU Reservation

A task in the normal unpatched Linux kernel is interrupted regularly by hardware
interrupts and the scheduler. The scheduler can decide to preempt the running task
and select a different one. These delays and interruptions are not predictable for
the task and introduce an indeterminism which prevents real-time execution. The
HLRT extension eliminates this indeterminism by allowing a task to run without
interruptions.

On a system with n CPUs the HLRT kernel allows n− 1 CPUs to be reserved. A
CPU is reserved by a task when all other tasks are excluded from using this CPU .
The task that reserved a CPU is bound to that CPU and can not be migrated to any
other CPU in the system . Further, the task can not be interrupted by the execution
of any other task since no other task is allowed to be scheduled on that CPU. In
addition to the exclusion of other tasks from being executed on a reserved CPU the
HLRT extension allows a real-time task to control which interrupts it receives on its
reserved CPU.

7.2.1. The SCHED_HLRT Scheduling Policy

A new scheduling policy is introduced by the HLRT extension. Each real-time task in
the system is scheduled with that policy. If a task switches to the SCHED_HLRT policy,
the scheduler must determine a currently unreserved CPU and reserve it for the task.
The real-time task’s CPU affinity mask is set to contain only its reserved CPU. A
task can switch to the SCHED_HLRT policy by calling the sched_setscheduler()
system call. The function is extended by the patch and supports the new scheduling
policy. The permission checks within sched_setscheduler() have been changed
to allow the use of SCHED_HLRT only if the task has the required capability (i.e.
super user) or CONFIG_HLRT_NOROOT was enabled in the kernel configuration. All
tasks connected with the SCHED_HLRT policy are managed by the fair scheduling
class. We will refer to a task that is scheduled with the SCHED_HLRT policy and is
managed by the fair scheduler module as a task inside the SCHED_HLRT class.

The new global variable hlrt_cpus_allowed contains all CPUs that are not
currently reserved. A (non real-time) task can run on a CPU if the task CPU affinity
and hlrt_cpus_allowed contain this CPU. When a CPU is reserved for a task,

2http://www.verified.de

92

7.2. CPU Reservation

the scheduler must determine a currently unreserved CPU and reserve it for the task
by removing it from hlrt_cpus_allowed. As mentioned above, at least one CPU
must always be left unreserved for all normal tasks to run on. The two functions listed
below are used for administrating the hlrt_cpus_allowed mask. Both operations
are protected by a spin-lock to avoid having two different tasks reserve the same CPU
concurrently.

hlrt_allocate_next_cpu() finds a free CPU and deletes it from the mask. The
first CPU is always skipped to ensure that at least one CPU is left for normal tasks
to continue execution.

hlrt_release_cpu() releases a CPU by setting its bit in the hlrt_cpus_allowed
mask.

A task is a real-time task, if it is scheduled with the SCHED_HLRT policy. Real-time
tasks are not allowed to migrate between reserved CPUs. Joining the SCHED_HLRT
policy is only possible with a successful call to hlrt_allocate_next_cpu(). The
task is then bound to the reserved CPU.

Before running a real-time task on its reserved CPU it must be ensured that all
other tasks have left this CPU. This is done during the CPU reservation process.
Listing 7.1 shows how a task is added to the SCHED_HLRT scheduling class.

static int hlrt_set_hlrt_policy(struct task_struct *p) sched.c

{

...

cpu = hlrt_allocate_next_cpu();

if (cpu < NR_CPUS) {

...

/* change scheduling policy */

...

__setscheduler(rq, p, SCHED_HLRT, 0);

...

/* move process to its reserved CPU */

set_cpus_allowed(p, cpumask_of_cpu(cpu));

/*

* kick all other processes from the reserved

* CPU’s runqueue

*/

migrate_live_tasks(cpu);

/* move away pending timers */

hlrt_move_timers(smp_processor_id(),

first_cpu(cpu_possible_map));

hlrt_move_hrtimers(smp_processor_id(),

first_cpu(cpu_possible_map));

/* move pending tasklets */

hlrt_move_tasklets(smp_processor_id(),

first_cpu(cpu_possible_map));

93

Chapter 7. Case Study 2: HaRTLinC

/* move block done softirq list */

hlrt_move_blk_done(smp_processor_id(),

first_cpu(cpu_possible_map));

/* move pending RCU callbacks */

hlrt_move_rcu_callbacks(smp_processor_id(),

first_cpu(cpu_possible_map));

...

return 0;

}

return -EBUSY;

}

static int __sched_setscheduler(struct task_struct *p, int policy,

struct sched_param *param, bool user)

{

...

#ifdef CONFIG_HLRT

if (policy == SCHED_HLRT) {

return hlrt_set_hlrt_policy(p);

}

...

#endif
...

}

Listing 7.1: Add a task to SCHED_HLRT

HLRT makes use of the migrate_live_tasks() function to migrate tasks away
from the newly reserved CPU. migrate_live_tasks() is part of the Linux CPU
hotplug mechanism. The function runs through the CPU run-queue of assigned tasks
and migrates them (all but not the current running task) to another CPU. The HLRT
extension ensures that the new assigned CPU for a migrated task is not a reserved
CPU. It is actually the first CPU in the task CPU affinity mask or, if no valid CPU
can be found in that mask, the first CPU in the system (which is never reserved).

Non real-time tasks bound to a reserved CPU must be treated in a special way. If
the CPU of a bound task becomes reserved, the task cannot be executed. It should
then be allowed to run on another unreserved CPU. A normal process is just released
from that CPU and executed on any other CPU. This, however, can be dangerous if
the task is a kernel thread that makes use of CPU bound variables. Special care must
be taken to avoid concurrency and race conditions. Variables that may be accessed
from different CPUs must be protected by locks. The five calls to hlrt_move_*()

routines in Listing 7.1 handle a set of kernel threads that fall into this category. They
will be discussed in Section 7.2.3.

A real-time task can release a CPU that was previously reserved. In this case the
task is removed from the SCHED_HLRT scheduling class. The new assigned policy is
SCHED_NORMAL. Further information about releasing a reserved CPU can be found
in [Efk05, Sect. 4.1.1.3].

94

7.2. CPU Reservation

Load balancing in the Linux kernel is a way for a task to change its CPU. The load
balancing mechanism is patched by the HLRT extension in order to not violate any
CPU reservations. The Linux scheduler pulls and pushes tasks from a overloaded
CPU run-queue to a less busy CPU. HLRT ensures that a reserved CPU does not
pull tasks from other run-queues and does push tasks from the run-queue of a
reserved CPU to another CPU. The function find_busiest_runqueue() which
is called from load_balance() is modified in a way, that CPU not included in
the hlrt_cpus_allowed mask are ignored by the algorithm. The details of these
changes are not considered here. Further information about the HLRT adjustments
to the Linux load balancing mechanism can be found in [Efk05, Sect. 4.1.2.4].

It must be assured that the child does not inherit the scheduling policy and the
CPU affinity if a real-time task uses the fork() or clone() system calls. Therefore
it is not allowed for the SCHED_HLRT scheduling policy to be inherited (Listing 7.2).
Normally, a forked task starts its execution on the CPU on which the parent task is
running at the time of the fork. In case of an HLRT task, the CPU for the child is
determined by taking any CPU from the intersection of the child’s cpus_allowed
mask and the hlrt_cpus_allowed mask. If no valid CPU can be found, the first
CPU in the system is used.

void sched_fork(struct task_struct *p, int clone_flags) sched.c

{

...

#ifdef CONFIG_HLRT

/* no inheritance of hard real-time scheduling class */

if (p->policy == SCHED_HLRT) {

...

p->policy = SCHED_NORMAL;

...

}

#endif
...

}

Listing 7.2: SCHED_HLRT policy is not inherited

When a previously suspended task becomes ready for execution again (waking up),
the selected run-queue must not be on a reserved CPU for a non real-time task. A
real-time task should wake up and be enqueued in the run-queue of its reserved CPU.
The HLRT extension patches the try_to_wake_up() function, which is invoked
by the various other functions that wake up tasks in the Linux kernel. In case that
the waking task is a not a real-time task and shall be executed on the current CPU
because it is not in a run-queue, try_to_wake_up() is extended to ensure that the
current CPU is not reserved. If the waking task is a member of the SCHED_HLRT
class the function must ensure that the task is enqueued on its assigned CPU. In case
that a non real-time task previously ran on a CPU that has now become reserved by
another task and is now supposed to be woken on that CPU, it is necessary to find a
new CPU for the task.

95

Chapter 7. Case Study 2: HaRTLinC

7.2.2. Interrupt Routing

The HLRT extension allows an real-time task to control which interrupts it receives
on its reserved CPU . By default, the interrupt routing for a CPU is not touched when
that CPU is reserved for a task. The two system calls hlrt_request_irq() and
hlrt_release_irq() are provided to modify the interrupt routing for a reserved
CPU (Listing 7.3).

static inline cpumask_t hlrt_get_irq_affinity(int irq)hlrt.c

{

return irq_desc[irq].affinity;

}

asmlinkage int sys_hlrt_request_irq(unsigned int irq)

{

...

affinity = hlrt_get_irq_affinity(irq);

cpus_complement(reserved_cpus, hlrt_cpus_allowed);

cpus_and(result, affinity, reserved_cpus);

if (cpus_empty(result))

retval =hlrt_set_irq_affinity(irq,current->cpus_allowed);

else
retval = -EBUSY;

...

return retval;

}

asmlinkage int sys_hlrt_release_irq(unsigned int irq)

{

...

affinity = hlrt_get_irq_affinity(irq);

cpus_complement(reserved_cpus, hlrt_cpus_allowed);

cpus_and(result, affinity, reserved_cpus);

cpu_clear(smp_processor_id(), result);

if (cpus_empty(result)) {

cpumask_t tmp = TARGET_CPUS;

cpus_and(affinity, hlrt_cpus_allowed, tmp);

retval = hlrt_set_irq_affinity(irq, affinity);

} else
retval = -EBUSY;

...

return retval;

}

Listing 7.3: HLRT interrupt routing

At can be seen in Listing 7.3 requesting an interrupt is only allowed if that interrupt
is not already bound to another reserved CPU. An interrupt can only be released if
was bound to the current CPU before. If an interrupts is released, the routing for the
interrupt is set to all non reserved CPUs. hlrt_set_irq_affinity() performs a
check if the requested interrupt is already routed to a reserved CPU. In this case the

96

7.2. CPU Reservation

operation fails. If the interrupt can be assigned to the given CPU mask the function
invokes irq_set_affinity().

7.2.3. Necessary Adjustments

SoftIRQs are used in the Linux kernel to defer work to a later point in time . The
work is bound to a given CPU (the CPU on which the SoftIRQ appears in most
cases). A SoftIRQ is a function that gets called some time after it has been activated
(raised). It can be executed when returning from a hardware interrupt or by the kernel
SoftIRQ thread. Both cases are not applicable to a reserved CPU. Because SoftIRQs
are raised on each CPU individually, they must be transferred to the first (unreserved)
CPU in case that the raising CPU is reserved . The HLRT extension solves this issue
by patching the Linux SoftIRQ mechanism. The changes are not discussed here. A
detailed analysis of the HLRT SoftIRQ patch can be found in [Efk05, Sect. 4.1.2.6].

In Listing 7.1 it is shown that during CPU reservation several operations take place
after a CPU was deleted from the hlrt_cpus_allowed mask and all other tasks
have left that CPU. A short overview of necessary adjustments to the Linux kernel for
a reserved CPU is given in this section. A detailed description of the hlrt_move_*()
operations can be found in [Efk05, Sect. 4.1.2].

hlrt_move_timers(), hlrt_move_hrtimers() Timers (and hrtimers3) which
have already been activated must be moved away when a CPU becomes reserved.
New timers must be activated on a different CPU. This is necessary, because the
local APIC timer interrupt may be disabled for a reserved CPU. Timers in the Linux
kernel are processed by the interrupt handler of the local APIC timer. Another
reason is the fact that real-time tasks should not be interrupted by other code (in
this case timer processing).

hlrt_move_tasklets() Pending tasklets for the reserved CPU must be moved to
another CPU (actually the first CPU). Tasklets are implemented via two SoftIRQs.
Since SoftIRQs are also directed to an unreserved CPU, new tasklets must be
enqueued on that CPU.

hlrt_move_blk_done() Blockoperation done SoftIRQs must be moved away when
a CPU becomes reserved. The block done SoftIRQ is raised by a driver after a
finished block command is enqueued into the block done queue. Any pending
command in the done queue must be moved to another CPU. Further, new finished
block commands must be directed to that CPU.

hlrt_move_rcu_callbacks() Similar to finished block commands, read-copy
update (RCU) operations are finished with a callback. The callbacks are processed
by the RCU tasklet. The per CPU queue of these pending finished operations
must be moved away when a CPU becomes reserved. New RCU callbacks must be
enqueued on that CPU.

3It was originally planned to support high resolution timers.

97

Chapter 7. Case Study 2: HaRTLinC

The read-copy update4 (RCU) implementation in the Linux kernel needs each CPU
to achieve a quiescent state at times. A quiescent state describes a state where all
local references shared to data structures have been lost and no assumptions are
made based on their previous contents. For instance, a CPU goes through a quiescent
state if a context switch (schedule) takes place. The RCU callbacks are processed
in batches. This happens as soon as all CPUs have gone through a quiescent state.
Allocated memory is freed in such a callback for the calling CPU. If the timer interrupt
is disabled for a reserved CPU and so the scheduler is not invoked regularly, it is
not detected that the CPU is in a quiescent state. Additionally, the RCU tasklet
(processing the callback) will never be scheduled on a reserved CPU. As a consequence,
memory allocated in RCU operations is never freed for that CPU. The HLRT extension
signals that a CPU passed through a quiescent state when a process returns from
a system call back to user space. The system call handler5 is patched in order to
implement this behavior (Listing 7.4).

sysenter_do_call:entry_32.S

...

call *sys_call_table(,%eax,4)
...

#ifdef CONFIG_HLRT

...

call hlrt_quiescent_state

...

#endif
...

Listing 7.4: Return from system call

7.3. Time-Triggered Architecture

The HLRT extension provides the periodic execution of tasks with fixed intervals .
These intervals can be seen as deadlines. A mechanism for detecting missed deadlines
is also included in the extension. A real-time task can be scheduled with fixed but user
defined intervals . If a real-time task chooses to activate periodic execution it must call
the newly introduced hlrt_set_periodic_local_timer_irq() system call to
define a period length. Another new system call hlrt_yield()6 is used by the
task to wait for the next period (puts the task to sleep) . If the task does not invoke
hlrt_yield() within a period, a SIGALRM signal will be sent to the task. In this
case the task has missed its deadline because it is still executing although the next
period has started . A task that uses this feature must not use any system calls that
might sleep because it would certainly miss its deadline. Furthermore, only tasks that

4Detailed information about the read-copy update mechanism can be found in [CRKH05, Chap. 5]
and [BC05, Chap. 5].

5The HLRT extension uses an additional vector. Both handlers are patched.
6Wrapper for sys_hlrt_wait_for_apic_timer().

98

7.4. Real-Time Application Programming

have a reserved CPU can be allowed to use this feature. Otherwise the timer interrupt
would be in use by the Linux kernel (timer, scheduler, . . .).

The HLRT extension makes use of the local APIC timer interrupt to realise peri-
odic tasks. A new interrupt vector is provided by HLRT. hlrt_set_periodic_-
local_timer_irq() programs the local APIC hardware in a way that the new
vector is used. Upon initialisation of the local APIC at boot time an interrupt gate is
added. The handler for the interrupt gate is shown in Listing 7.5. It is called whenever
the local APIC timer creates an interrupt.

void smp_hlrt_apic_timer_interrupt(struct pt_regs regs) hlrt.c

{

...

ack_APIC_irq();

/* use nmi_enter/_exit because irq_exit would execute pending

SoftIRQs, which we want to avoid */

nmi_enter();

q = &__get_cpu_var(hlrt_apic_timer_wait_queue);

if (waitqueue_active(q)) {

wake_up(q);

} else {

send_sig(SIGALRM, current, 0);

...

}

nmi_exit();

}

Listing 7.5: HLRT local APIC interrupt handler

If the timer interrupt fires and the corresponding task can not be found in the
wait queue, a SIGALRM is sent to the task. If the task is in the wait queue, it has
performed a hlrt_yield() system call before (Listing 7.6). The wait queue is a
per CPU variable. Since only one real-time task per CPU is allowed (and possible) in
a HLRT system, the queue has either one or no element. If the task is not in the wait
queue, current is always the task that missed the deadline.

asmlinkage int sys_hlrt_wait_for_apic_timer(void) hlrt.c

{

...

interruptible_sleep_on(&__get_cpu_var(hlrt_apic_timer_wait_queue));

return 0;

}

Listing 7.6: Wait for next period

7.4. Real-Time Application Programming

As mentioned in Section 7.1 a real-time task in the HLRT operating system uses a
special API. The CPU-reservation and interrupt-redirection functions are described
below.

99

Chapter 7. Case Study 2: HaRTLinC

rtthlrt_begin_rt_process(), rtthlrt_end_rt_process() Reserves or re-
leases a CPU for the calling task. rtthlrt_begin_rt_process() adds the
calling task to the SCHED_HLRT scheduling class with a call to sched_set-

scheduler(). On success, the memory is locked by calling mlockall() . All
interrupts for the reserved CPU are deactivated, including the APIC timer interrupt.
When releasing CPU, the interrupts are reactivated for the CPU.

rtthlrt_enable_irq(), rtthlrt_disable_irq() After a task has been given
real-time status by calling rtthlrt_begin_rt_process(), no interrupt re-
quests are relayed to the reserved CPU any more. If the task still wants to receive
interrupt requests, it can enable (or disable) single interrupts. Requested interrupts
will be delivered exclusively to the reserved CPU.

rtthlrt_disable_local_timer_irq(), rtthlrt_enable_local_timer_irq()
These functions allow the calling task to adjust the local APIC timer interrupt.
This interrupt is not handled by rtthlrt_enable_irq().

hlrt_set_periodic_local_timer_irq(), hlrt_yield() The calling real-
time task runs on in periodic mode with the specified period. When the period
elapses, the task must have performed a hlrt_yield() call, from which it will
then be woken.

An example HLRT real-time application is given in [Efk05, Chap. 5]. The benchmark
tests implementation in Section 7.5 can be taken as example applications for the
HLRT extension as well.

7.5. Benchmarking

The benchmark tests described in Section 5.4.3 will be discussed in this section in
concrete implementation for the HLRT operating system. The presented values in
this section are the results from executing the same tests for a patched and a non-
patched kernel7. This makes it easy to see the impact of the HLRT extension. In
Chapter 12 the benchmark results are compared and evaluated to other real-time
operating systems. The tests for the unpatched kernel were already described in
Section 6.5. All benchmark results can be accessed at http://www.informatik.
uni-bremen.de/agbs/dirkr/HRTL/benchmark_results.tgz.

Not all benchmark tests as described in Section 5.4.3 can be applied to the HLRT
operating system. The restriction that only one real-time task can run on one CPU
makes all task switching tests inapplicable.

7.5.1. Task Period Tests

Listing 7.7 shows the HLRT periodic task benchmark test implementation. The
setup function (start_rt()) is called early in the main function. As mentioned in

7Linux kernel version 2.6.27.19

100

7.5. Benchmarking

Section 7.4 the library function rtthlrt_begin_rt_process() gives the calling
task real-time properties. The memory area for the measurement results (tsc[]) is
touched before executing the main loop. As described in Section 6.4 this is necessary
to cause a stack fault before the test starts.

int start_rt(void) { period_....c

if (0 > rtthlrt_begin_rt_process()) {

perror("hlrt_begin_rt_process failed");

return -1;

}

return 0;

}

int main(int argc, char **argv) {

uint32_t tsc[LOOP_COUNT];

...

if (0 > start_rt())

exit(EXIT_FAILURE);

/* pre-fault stack */

for (i = 0; i < LOOP_COUNT; i++)

rdtsc_32(tsc[i]);

...

/* start local APIC timer in periodic mode */

hlrt_set_periodic_local_timer_irq(atoi(argv[1]));

/* benchmark */

for (i = 0; i < LOOP_COUNT; i++) {

hlrt_yield();

rdtscp_32(tsc[i]);

cpuid();

#ifdef TRIGGER_PARPORT

parport_toggle();

#else
busy();

#endif
}

...

}

Listing 7.7: HLRT period task benchmark test

The test makes use of the HLRT time-triggered architecture (Section 7.3) to realise
periodic task behavior. The hlrt_yield() library call blocks until the programmed
period expires. A signal handler function is also implemented and not shown in
the listing. Different from the Linux periodic task benchmark test implementation
(Section 6.5.1) a SIGALRM signal is only sent in case the real-time task misses its
deadline.

The first benchmark test for the HLRT extension operating system measures the
scheduling precision of a periodic task with a period of 500 μs (Table 7.1). The test
was executed in the 3 scenarios described in Section 5.3.

101

Chapter 7. Case Study 2: HaRTLinC

Scenario Average Min Max Gap Deviation

Normal 499.936 499.787 500.087 0.300 0.035

CPU utilization 499.939 497.863 502.017 4.154 0.558

I/O utilization 500.101 499.397 504.599 5.202 0.837

Table 7.1.: Benchmark test results [μs]: HLRT period task (500μs)

Like for the RT-Preempt extension the results in the table were converted to the
μs scala. The translation caused some inaccuracy in the precision of the values
due to rounding errors. The test is not applicable for an unpatched Linux 2.6.27.19
kernel. Timers smaller than the Linux scheduling interval (10 ms in this case) are only
provided in the Linux kernel with the use of high resolution timers. As described in
Section 7.1 the HLRT extension does not support this feature. For the comparability
of (all) HLRT benchmark results, the configuration was not adjusted for the unpatched
Linux kernel.

Table 7.2 and Table 7.3 show the results of the periodic benchmark test with a
period of 10 ms. The results are also shown in ??.

Scenario Average Min Max Gap Deviation

Normal 9999.051 9998.762 10003.404 4.642 0.478

CPU utilization 9999.007 9995.378 10004.722 9.343 1.753

I/O utilization 10002.072 9997.962 10011.605 13.643 3.265

Table 7.2.: Benchmark test results [μs]: HLRT period task (10ms)

Scenario Average Min Max Gap Deviation

Normal 9998.832 9915.862 10086.177 170.315 10.598

CPU utilization 9998.833 9781.798 10226.955 445.157 44.156

I/O utilization 10002.902 9916.873 10088.423 171.550 13.792

Table 7.3.: Benchmark test results [μs]: Linux 2.6.27 period task (10ms)

The same test is repeated with a 100 ms (Table 7.4 and Table 7.5) and a 1 second
period (Table 7.6 and Table 7.7). Nevertheless, the test is only executed in the normal
scenario.

Scenario Average Min Max Gap Deviation

Normal 99990.496 99989.767 99994.561 4.794 1.314

Table 7.4.: Benchmark test results [μs]: HLRT period task (100ms)

102

7.5. Benchmarking

Scenario Average Min Max Gap Deviation

Normal 99988.119 99986.510 99993.076 6.567 1.320

Table 7.5.: Benchmark test results [μs]: Linux 2.6.27 period task (100ms)

Scenario Average Min Max Gap Deviation

Normal 999905.152 999904.888 999909.213 4.324 0.682

Table 7.6.: Benchmark test results [μs]: HLRT period task (1sec)

Scenario Average Min Max Gap Deviation

Normal 999881.393 999879.947 999886.276 6.329 1.169

Table 7.7.: Benchmark test results [μs]: Linux 2.6.27 period task (1sec)

7.5.2. Interrupt Tests

The implementation of the interrupt benchmark tests as described in Section 5.4.3.4
are explained in this section. Since the HLRT extension allows only one real-time
task per CPU, the interrupt to task latency benchmark test is not applicable for
HLRT. For the realisation of the tests, it is necessary to enhance the kernel with a
module. This module implements the interrupt handler for the parallel port interrupt.
Like for a normal Linux kernel (Listing 6.12) the interrupt handler just captures the
current value of the TSC register and returns. Values between the main benchmark
test and the measurements inside the interrupt handler are transmitted via the proc
interface. Listing 7.8 shows the implementation of the interrupt latency benchmark
test main loop. The interrupt is triggered with the benchmark framework functions
parport_low() and parport_high().

int main(void) { interrupt_isr.c

...

if (0 > start_rt())

exit(EXIT_FAILURE);

parport_init_irq(-1);

...

for (i = 0; i < LOOP_COUNT; i++) {

busy();

parport_low();

busy();

cpuid();

rdtsc_32(res.start[i]);

parport_high();

do {

...

fscanf(fh, "%s\n", tmp);

res.stop[i] = strtoll(tmp, NULL, 10);

103

Chapter 7. Case Study 2: HaRTLinC

} while (old == res.stop[i]);

old = res.stop[i];

}

...

}

static inline void parport_init_irq(int cpu) {bench...linux.h

...

#ifdef BENCHMARK_HLRT

cpu = cpu;

rtthlrt_enable_irq(PARPORT_IRQ);

#endif
}

Listing 7.8: HLRT interrupt latency benchmark test

The results of the benchmark test are shown in Table 7.8 and Table 7.9.

Scenario Average Min Max Gap Deviation

Normal 4.610 3.245 6.005 2.760 0.690

CPU utilization 5.383 3.395 7.089 3.694 0.782

I/O utilization 4.625 3.274 5.968 2.694 0.690

Table 7.8.: Benchmark test results [μs]: HLRT interrupt latency (ISR)

Scenario Average Min Max Gap Deviation

Normal 4.785 3.350 6.106 2.757 0.695

CPU utilization 5.284 3.350 11.919 8.569 0.928

I/O utilization 4.814 3.372 6.741 3.368 0.702

Table 7.9.: Benchmark test results [μs]: Linux 2.6.27 interrupt latency (ISR)

The interrupt dispatch latency benchmark test is similar to the interrupt latency
benchmark test except of the time measurement points. For this test the first value is
captured within the kernel. The second time value is gathered when returning from
interrupt. Listing 7.9 illustrates the interrupt dispatch latency benchmark test.

int main(void) {int...dispatch.c

...

for (i = 0; i < LOOP_COUNT; i++) {

busy();

parport_low();

busy();

parport_high();

do {

rewind(fh);

104

7.6. Summary

fscanf(fh, "%s\n", tmp);

res.start[i] = strtoll(tmp, NULL, 10);

} while (old == res.start[i]);

rdtscp_32(res.stop[i]);

cpuid();

old = res.start[i];

}

...

}

Listing 7.9: HLRT interrupt dispatch latency benchmark test

The test is similar to the RT-Preempt interrupt dispatch latency benchmark test
(Listing 6.15). The same problem with the slight delay when triggering the interrupt
can be found in this scenario too. The test will be interrupted within the loop, but
an additional comparison for leaving the while loop takes place before finishing the
measurement.

The results of the interrupt dispatch latency benchmark test are provided in
Table 7.10 and Table 7.11.

Scenario Average Min Max Gap Deviation

Normal 1.387 0.810 1.930 1.120 0.317

CPU utilization 5.861 0.843 13.197 12.354 2.911

I/O utilization 1.415 0.831 1.950 1.118 0.322

Table 7.10.: Benchmark test results [μs]: HLRT interrupt latency (dispatch)

Scenario Average Min Max Gap Deviation

Normal 1.267 0.721 1.770 1.048 0.301

CPU utilization 4.495 0.717 10.435 9.717 2.474

I/O utilization 1.291 0.718 2.243 1.524 0.320

Table 7.11.: Benchmark test results [μs]: Linux 2.6.27 interrupt latency (dispatch)

7.6. Summary

The HLRT patch achieves real-time behavior by isolating each real-time task on an
exclusevly assigned CPU. There is no need to introduce extra preemption points since
no other task can interrupt a running real-time task.

In Chapter 11 we will see how the basic idea of CPU reservation and time-triggerd ar-
chitecture are used to build a task partitioning system together wither other approaches
from the next chapter. The concepts of threaded interrupt handlers (Section 6.3)

105

Chapter 7. Case Study 2: HaRTLinC

together with the interrupt routing introduced in this chapter will be modified to fit
into our partitioning system.

106

8
Case Study 3: QNX Neutrino

QNX is one of the most widely used real-time operating systems. In this chapter
we will discuss some of the main features of the QNX kernel and analyse technical
aspects. Section 8.4 explains the implementation of the benchmark tests introduced
in Section 5.4.3 for the QNX Neutrino operating system.

8.1. Background and Overview

Neutrino is the evolution of the operating system formerly known as QUNIX (abbrevi-
ated QNX). To meet the increasing market orientation on POSIX models, the kernel of
the QUNIX operating system was completely redeveloped. The result of these efforts
is the inherently POSIX compliant and SMP compatible real-time operating system
Neutrino. Typically, the system comes with an integrated graphical user interface
(Photon microGUI), a development environment based on Eclipse, various GNU tools
and internet software (Mozilla). Neutrino has been ported to many architectures and
now runs on almost any modern CPU. It is primarily aimed at the embedded market.

In Neutrino the QNX Momentics Development Suite is included. Neutrino is
currently not available without this commercial development environment. Momentics
allows the development of Neutrino applications under Linux, Windows, Solaris and
existing Neutrino based systems.

Neutrino is one of the most popular real-time operating systems available for critical
tasks. It has a Unix-like structure and is fully POSIX compliant. With an API
wrapper, it also supports software for Linux. Its strengths lie in the easy development
of software, control of industrial robots and micro-computers. A variety of hardware is
supported by Neutrino. However, support for PCIe has not been made available yet.

8.2. Microkernel Architecture

The Neutrino microkernel provides some minimal services used by a set of cooperating
tasks, which in turn provide the higher-level OS functionality. Services like filesystems
and partitioning are provided by optional tasks. The kernel itself is dedicated to a

107

Chapter 8. Case Study 3: QNX Neutrino

few fundamental services:1

Message-passing services handle the routing of all messages between all tasks
(threads) throughout the entire system. POSIX signal primitives are also included
in this service.

Synchronization services handle in addition to message passing POSIX conform
thread-synchronization primitives.

Timer services provide a set of POSIX timer services.

Process management provides scheduling of tasks for execution using the various
POSIX realtime scheduling algorithms (First-In-First-Out and Round-Robin). The
process manager portion is responsible for managing processes, memory, and the
pathname space.

Low-level interrupt handling receives all hardware interrupts and faults, then
passes them on to the appropriate driver task.

All operating system services, except those provided by the mandatory microkernel,
are handled via standard processes. Drivers and applications are isolated to their own
memory address, and operate independently. In a multicore system, QNX allows only
one thread at a time to enter the kernel. The kernel has a restart model for kernel call
preemption. A task inside a kernel call can be preempted by a higher priority task.
If the lower priority task is executed again, the first thing it will do is to re-execute
the system call instruction. This will restart the kernel call that was being worked on
when it was interrupted in the first place.

This section gives an overview of the main QNX Neutrino microkernel services. For
more information on QNX, see [Sys05, Chap. 2] and [Hil92].

8.2.1. Process Management

Process management in Neutrino is split into two components. The scheduling of
tasks according to the First-In-First-Out and Round-Robin policies is handled directly
by the kernel. Creation and destruction of tasks is done in a single module called
procnto. This module is required for all runtime systems. procnto runs as a true
process and is scheduled to run by the kernel like all other processes. It is the only
process which shares the same address space as the kernel. Communication with
other processes takes place via the kernel’s message passing primitives (Section 8.2.3).
procnto is responsible for creating new processes in the system and managing the
most fundamental resources associated with a process. These services are all provided
via messages.2

1QNX can be driven as a distributed system. The related network services are not listed here.
2Since messages are network-wide, it is easy to create a process on another node by sending the

process-creation message to the instance of procnto running on that node.

108

8.2. Microkernel Architecture

procnto is capable of creating multiple POSIX processes, each of which may
contain multiple POSIX threads. Like Linux systems, QNX supports some process
creation primitives (fork(), exec() and spawn()). Both fork() and exec()

are defined by POSIX, while the implementation of spawn() is unique to QNX. It
can create processes on any node in the network. When a process is created by one of
the three primitives, it inherits much of its environment from its parent. A process
goes through four phases:

Creation of a process consists of allocating a process ID for the new process. The
information that defines the environment of the new process is initialized. Most of
it is inherited from the parent process.

Loading of a process image. This is done by a separate loader thread. Actually, the
loader thread is the newly created task in an early state. The loader code resides in
the procnto module, but the thread runs under the process ID of the new process.

Execution of the new process. All processes run concurrently with their parents.
In addition, the termination of a parent process does not automatically cause the
termination of its child processes.

Termination in either of two ways: a signal whose defined action is to cause process
termination is delivered to the process or the process invokes exit().

Similar to Linux systems, every task in Neutrino is assigned a priority level . The
scheduler selects the next task to run by looking at the priority assigned to every
task that is ready for execution. The task with the highest priority is selected to run.
The default priority for a new process is inherited from its parent. The priority level
can be adjusted at runtime with the two system calls getprio() and setprio().
Although a task inherits its scheduling class from its parent process. It can be changed
with the two system calls getscheduler() and setscheduler(). procnto has
no priority assigned. It listens on a channel for incoming messages. When procnto

receives a message it floats to the same priority as the client thread.
The POSIX semantics for device and file access is presented in QNX by the so

called pathname space. Managing the pathname space is part of the procnto module.
The details of the pathname space implementation can be found at [Sys05, Chap. 5].
QNX encourages the development of applications that are split up into cooperating
processes. Processes can register names within the pathname space. Other processes
can then ask the process manager for the process ID associated with that name.

The process manager is responsible for memory management. On task creation, the
loader thread starts in a new virtual memory space. The process manager will then
take over this environment, changing the mapping tables as required by the processes
it starts. POSIX memory locking is supported by QNX, so that a process can avoid
the latency of fetching a page of memory, by locking the memory.

109

Chapter 8. Case Study 3: QNX Neutrino

8.2.2. Interrupt Handling

User-level processes can attach (and detach) hardware interrupt handlers to (and
from) interrupt vectors at runtime. When the hardware interrupt occurs, the processor
will enter the interrupt redirector in the microkernel. Here the processor context is
set so that the handler has access to the code and data that are part of the thread
the handler is contained within. This allows the handler to use the buffers and code
in the user-level thread. If higher-level work is required, QNX provides an API for
queuing events to the thread the handler belongs to . Since interrupt handler run with
the memory-mapping of the thread containing it, the handler can directly manipulate
devices mapped into the thread’s address space, or directly perform I/O instructions.
As a result, device drivers that manipulate hardware don’t need to be linked into the
kernel.

The interrupt redirector code in the microkernel will call each interrupt handler
attached to that hardware interrupt. If the handler indicates that an event has to
be passed to a process, the kernel will queue the event. When the last handler has
been called for that vector, the kernel interrupt handler will finish manipulating the
interrupt control hardware. If a queued event causes a higher-priority thread to
become ready for execution, the interrupt return will switch into the context of the
higher-priority thread.

While the interrupt handler is executing, it has full hardware access, but cannot
invoke other kernel calls. If necessary, the handler can cause a thread to be scheduled
at some user-specified priority to do further work.

Example programs that use the QNX interrupt handling can be found in Sec-
tion 8.4.4.

8.2.3. Message Passing

Message passing is the primary form of inter process communication (IPC) in QNX
Neutrino. Other forms of IPC are built over the native message passing. In a multicore
system, QNX uses interprocessor interrupts (IPI) for inter processor communication.

Messages are passed via communication channels. The ChannelCreate() system
call creates a channel that can be used to receive messages. Once created, the channel
is owned by the process and is not bound to the creating thread. To establish a
connection between a process and a channel, the system call ConnectAttach() is
used. In addition, the system calls name_attach() and name_open() can be used
in order to create or open a channel and associate a name with it. Communication
over channels is synchronized . It always follows the send - receive - reply scheme. A
reader task is blocked until it receives a message. The sending task then is suspended
until the receiving task sends a reply message.

To dequeue and read messages from a channel, the MsgReceive() system call is
used. On the other side, the MsgSend() system call is used to enqueue messages on
the channel. Messages are enqueued in priority order. An example application that
uses message passing can be seen in Section 8.4.2.

110

8.3. Adaptive Partitioning Scheduler

In QNX, a special message type exists that can be passed via communication
channels. A pulses is a tiny message that can carry only 40 bits of payload. The
most important difference compared to normal messages is, that sending a pulse
is non-blocking for the sender. Receiving a pulse is done by either system call
MsgReceive() which has already been introduced, or the MsgReceivePulse()
system call. MsgReceivePulse() will receive only pulses and ignores normal
messages (they stay in the queue).

As mentioned above in this section, IPC mechanisms are built on top of mes-
sage passing in QNX. The microkernel delivers events for various system states via
pulse/channel communication. A task can register to receive an event as a timer . In
Section 8.4.1 it can be seen how pulses can be used as timers.

8.3. Adaptive Partitioning Scheduler

As a microkernel operating system Neutrino is based on the strategy to run the
bulk of the system in the form of processes. Here, each process runs in a separate
and protected memory area. The system includes several segments called partitions
in which processes are trapped . Figure 8.1 illustrates the partitioning mechanism
of Neutrino. System services such as hardware drivers run in the system partition.
This significantly increases the stability of the kernel . A faulty device driver can
not affect the overall system. Developers and integrators can isolate downloadable
content to the secure downloadable partition. Malicious or unvalidated software that
monopolizes system resources can not starve critical functions of CPU time. Unlike
fixed partitioning mechanisms, the adaptive partitioning of Neutrino ensures that
spare CPU capacity is used when it is available.

The Neutrino kernel (like primarily all microkernel architectures) includes only
the most fundamental services, such as signals, timers and schedulers. All other
components run as processes in the system partition. The components and kernel com-
municate via a single messaging layer (linking interface) as described in Section 8.2.3.
This virtual software bus permits the addition and removal of software components at
any time.

Adaptive partitions are a concept in QNX to separate applications into dynamic sets
(partitions). Each partition has a budget of CPU time allocated to it that guarantees
its minimum share of the CPU’s resources . A partition’s unused budget is distributed
among partitions that require extra resources when the system isn’t loaded. Partitions
can be dynamically added and configured at system run time. Also, threads can
be added to and deleted from a partition at run time. Child threads automatically
run in the same partition as their parent. However, adaptive partitions can not be
dynamically deleted. Once created, a partition can only be removed by a system
restart.3 The following properties describe an adaptive partition:

name The name of the partition.
3Provided that the partition is not included in the system specification.

111

Chapter 8. Case Study 3: QNX Neutrino

QNX Neutrino Microkernel

Scheduler Signals Timers IPC
. . .

Linking Interface

File System Drivers Network
. . .

Application Application Application
. . .

Application Application Application
. . .

System
Partition

Application
Partition

Downloadable
Partition

20
%

bu
dg

et
40

%
bu

dg
et

40
%

bu
dg

et

Figure 8.1.: QNX Neutrino adaptive partitioning

budget_percent The percentage CPU budget for the partition. Budgets given to
a new partition are subtracted from the parent partition.

critical_budget_ms The critical budget for the partition.

id The partition’s ID number (chosen by the system).

Adaptive partitions are handled by the adaptive partitioning scheduler (APS). APS
is a thread scheduler that is available as an optional module for the process manager
(Section 8.2.1). On system start, an initial partition is created (system partition). The
System partition initially has a CPU budget of 100%. When creating a new partition,
its budget is taken from its parent partition’s budget; which is usually the system
partition. The following properties describe the overall parameters of the adaptive
partitioning scheduler:

cycles_per_ms The number of machine cycles in a millisecond. This is a constant
given by the system.

windowsize_cycles The length, in CPU cycles, of the averaging window used for
scheduling. By default, this corresponds to 100 ms.

112

8.3. Adaptive Partitioning Scheduler

windowsize2_cycles The length of window 2. Typically 10 times the window
size.

windowsize3_cycles The length of window 3. Typically 100 times the window
size.

scheduling_policy_flags These flags set options for the adaptive partitioning
scheduling algorithm.

sec_flags Defines the security options of APS.

bankruptcy_policy Defines how the APS behaves if a partition exhausts its
critical budget.

num_partitions The number of partitions defined.

max_partitions The largest number of partitions that may be created at any time.
This is a system constant and is set to eight.

The adaptive partitioning scheduler throttles CPU usage by measuring the average
CPU usage of each partition. The average is computed over the averaging window
(windowsize_cycles). The window size defines the time over which APS balances
the partitions to their CPU limits. The window moves forward as time advances. The
two additional windows windowsize2_cycles and windowsize3_cycles allow
to keep statistics over a longer period. They are meaningless for partition balancing.

APS guarantees that partitions receive a defined minimum amount of CPU time. It
also supports task priority levels and preempts a lower prior task if a higher priority
task becomes ready. Both requirements can be satisfied as long as there is no need to
limit a partition in order to guarantee some other partition’s budget. The following
three scenarios can be distinguished:

Underload Partitions are demanding less CPU time than their defined budgets allow.
APS chooses between them by picking the highest-priority running thread.

Idle time One or more partitions are not running. APS then gives that partition’s
time to other running partitions. If the other running partitions demand enough
time, they’re allowed to run over budget.

Overload All partitions are demanding their full budget. In this case, the requirement
to meet the partitions’ guaranteed budgets takes precedence over priority.

APS allows a task to run even if its partition is over budget. critical_budget_ms
must be defined and available for that partition. A critical task is automatically
identified if it was initiated by an I/O interrupt. However, the SchedCtl() system
call can be used to mark a thread as critical. A critical thread is allowed to violate the
budget rules of its partition and run immediately. A thread that receives a message
from a critical thread automatically becomes critical as well. The critical time budget

113

Chapter 8. Case Study 3: QNX Neutrino

(critical_budget_ms) is specified in milliseconds. It’s the amount of time all
critical threads may use during an averaging window. A critical thread will run as
long as its partition still has critical budget. The critical budget of a partition is not
billed if the partition still has CPU budget or no other partition is competing for CPU
time. The critical threads run whether or not the time is billed as critical. The only
time critical threads would not run is when their partition has exhausted its critical
budget. The number of critical threads in the system must be few or APS will not be
able to guarantee all partitions’ their minimum CPU budgets.

If the critical CPU time billed to a partition exceeds its critical budget the previously
mentioned bankruptcy_policy becomes important. A so called bankruptcy is
always considered to be a design error on the part of the application. QNX provides
several strategies to handle bankruptcy. It reaches from the default behaviour where
it is not allowed for a partition to run again until it gets more budget to a forced
system reboot.

Threads can be added to and removed from partitions at runtime using the
SchedCtl() function .

8.4. Benchmarking

The benchmark tests described in Section 5.4.3 are going to be discussed in this section
in concrete implementation for the QNX Neutrino operating system. In Chapter 12
the benchmark results are compared and evaluated to other real-time operating
systems. All benchmark results can be accessed at http://www.informatik.

uni-bremen.de/agbs/dirkr/HRTL/benchmark_results.tgz.
Listing 8.1 shows the system wide setting for the benchmark testing. This stand

alone application is executed before the testing starts. After adjusting the period of
the timer interrupt, one partition is created that can use up to 100% of the available
CPU time. All tests are executed in this partition.

int main(void) {setup.c

...

/* set the clock period to 100 us */

if (0 > ClockPeriod(CLOCK_REALTIME, &clkper, NULL, 0)) {

...

memset(&creation_data, 0, sizeof(creation_data));
creation_data.budget_percent = BUDGET_PERCENT;

creation_data.critical_budget_ms = CRITICAL_MS;

creation_data.name = PARTITION_NAME;

/* create adaptive partition */

ret = SchedCtl(SCHED_APS_CREATE_PARTITION, &creation_data,

sizeof(creation_data));
...

}

Listing 8.1: QNX benchmark test system wide settings

114

8.4. Benchmarking

Listing 8.2 shows the main setup for a benchmark process in the Neutrino operating
system. Each task calls this functions before executing any measurements. As
mentioned in Section 5.4.1 a task has to arrange some sort of affinity to a certain
CPU in order to keep the TSC register values comparable. Further, the real-time
task determines its scheduling policy to be SCHED_FIFO and locks its memory by
calling mlockall() .

static inline int setup_rt(int prio) { bench...qnx.h

...

param.sched_priority = prio;

if (0 > sched_setscheduler(0, SCHED_FIFO, ¶m)) {

...

if (0 > mlockall(MCL_CURRENT | MCL_FUTURE)) {

...

APS_INIT_DATA(&lookup_data);

lookup_data.name = PARTITION_NAME;

ret = SchedCtl(SCHED_APS_LOOKUP, &lookup_data, sizeof(lookup_data));
if (0 > ret) {

...

APS_INIT_DATA(&join_data);

...

ret =SchedCtl(SCHED_APS_JOIN_PARTITION,&join_data,sizeof(join_data));
if (0 > ret) {

...

}

static inline int set_affinity(int cpu) {

...

rmaskp = (unsigned *)(&(((int *)my_data)[1]));

imaskp = rmaskp + num_elements;

RMSK_SET(cpu, rmaskp);

RMSK_SET(cpu, imaskp);

retval = ThreadCtl(_NTO_TCTL_RUNMASK_GET_AND_SET_INHERIT, my_data);

...

}

Listing 8.2: QNX benchmark test setup

8.4.1. Task Period Tests

The periodic task benchmark test is presented in Listing 8.3. As can be seen, the
setup functions (Listing 8.2) are called early in the main function. The memory area
for the measurement results (tsc[]) is touched before executing the main loop. As
described in Section 6.4 this is necessary to cause a stack fault before the test starts.

int main(int argc, char **argv) { period_....c

uint32_t tsc[LOOP_COUNT];

...

if (0 > setup_rt(RT_PRIO))

exit(EXIT_FAILURE);

115

Chapter 8. Case Study 3: QNX Neutrino

if (0 > set_affinity(BENCHMARK_CPU))

exit(EXIT_FAILURE);

...

/* pre-fault stack */

for (i = 0; i < LOOP_COUNT; i++)

rdtsc_32(tsc[i]);

if (0 > (chid = ChannelCreate(0))) {

...

if (0 > (coid = ConnectAttach(ND_LOCAL_NODE, 0, chid, 0, 0))) {

...

SIGEV_PULSE_INIT(&event, coid,

SIGEV_PULSE_PRIO_INHERIT,

_PULSE_CODE_MINAVAIL,

(void*)pulse_id);

if (0 > (timer_id = start_timer(&timer, &event)))

...

for (i = 0; i < LOOP_COUNT; i++) {

MsgReceivePulse(chid, &pulse, sizeof(pulse), NULL);

rdtscp_32(tsc[i]);

cpuid();

#ifdef TRIGGER_PARPORT

parport_toggle();

#else
busy();

#endif
}

...

}

static inline int start_timer(struct timespec *time,struct sigevent *e){bench...qnx.h

...

retval = timer_create(CLOCK_REALTIME, e, &timer_id);

...

timer.it_value.tv_sec = time->tv_sec;

timer.it_value.tv_nsec = time->tv_nsec;

timer.it_interval.tv_sec = time->tv_sec;

timer.it_interval.tv_nsec = time->tv_nsec;

retval = timer_settime(timer_id, 0, &timer, NULL);

...

return timer_id;

}

Listing 8.3: QNX period task benchmark test

Periodic task behavior is realised by using an interval timer, programmed with
timer_settime(). Upon expiration of the programmed timer, a pulse is sent to
the benchmark task. The appropriated MsgReceivePulse() call in the main loop
blocks until the pulse is received by the process. The pulse indicates the start of a
new period.

116

8.4. Benchmarking

The first benchmark test for the QNX Neutrino operating system measures the
scheduling precision of a periodic task with a timer of 500 μs (Table 8.1). The test
was executed in the 3 scenarios described in Section 5.3.

Scenario Average Min Max Gap Deviation

Normal 499.807 493.048 599.774 106.726 10.966

CPU utilization 499.817 496.591 599.546 102.955 10.895

I/O utilization 499.808 465.293 598.909 133.615 11.523

Table 8.1.: Benchmark test results [μs]: QNX period task (500μs)

Table 8.2 shows the results of the periodic benchmark test with a 20 times larger
timer. In the CPU and I/O utilization scenarios Neutrino system loses some accuracy
with a 10 ms timer.

Scenario Average Min Max Gap Deviation

Normal 9999.100 9969.021 10075.079 106.058 44.213

CPU utilization 9999.107 9970.339 10074.667 104.328 44.255

I/O utilization 9999.108 9950.242 10085.792 135.551 44.161

Table 8.2.: Benchmark test results [μs]: QNX period task (10ms)

The same test is repeated with a 100 ms (Table 8.3) and a 1 second timer (Table 8.4).
Nevertheless, the test is only executed in the normal scenario.

Scenario Average Min Max Gap Deviation

Normal 99990.666 99919.991 100025.977 105.986 46.676

Table 8.3.: Benchmark test results [μs]: QNX period task (100ms)

Scenario Average Min Max Gap Deviation

Normal 999907.835 999827.273 999934.190 106.916 41.930

Table 8.4.: Benchmark test results [μs]: QNX period task (1sec)

8.4.2. Task Switch Tests

As described in Section 5.2.1 two different sorts of tests for measuring task switch
latency are implemented (task preemption time and task switch time). The task
preemption time is measured in two variants. Listing 8.4 shows the implementation
of the startup routine for the task preemption latency benchmark test.

117

Chapter 8. Case Study 3: QNX Neutrino

int main(void) {
switch_...ev

...

if (0 > setup_rt(RT_PRIO +1))

exit(EXIT_FAILURE);

if (0 > set_affinity(BENCHMARK_CPU))

exit(EXIT_FAILURE);

...

/* register a name in the namespace and create a channel */

if ((attach = name_attach(NULL, MY_SERV, 0)) == NULL) {

...

if (0 > (coid = ConnectAttach(0, 0, attach->chid, _NTO_SIDE_CHANNEL,

0))) {

...

if (0 == fork()) {

if (0 > set_affinity(BENCHMARK_CPU))

exit(EXIT_FAILURE);

if (0 > setup_rt(RT_PRIO))

exit(EXIT_FAILURE);

task_high(1, res);

...

} else
t1 = MsgReceive(attach->chid, NULL, 0, NULL);

if (0 == fork()) {

if (0 > set_affinity(BENCHMARK_CPU))

exit(EXIT_FAILURE);

if (0 > setup_rt(RT_PRIO -1))

exit(EXIT_FAILURE);

task_low(0, res);

...

} else
t0 = MsgReceive(attach->chid, NULL, 0, NULL);

MsgReply(t1, 0, NULL, 0);

MsgReply(t0, 0, NULL, 0);

sched_setparam(0, &schedp);

...

}

Listing 8.4: QNX task preemption benchmark test startup

Two channels are used as events for synchronising the start of the test. Since,
actually three different processes are involved in test executing, the results are stored
in a shared memory segment. The initialisation of the shared memory segment is not
shown in the listing. Two processes are forked during test startup. As one can see,
each created process calls the previously introduced setup functions (Listing 8.2) at
first. The process related startup routines are shown later in this section. A channel

118

8.4. Benchmarking

(t0 or t1) is used here to let the main process block until the new created process
finishes its own setup phase. The created process sends a message on that channel and
waits for a reply. After both processes have finished their startup the main process
send a reply on both channels and lowers its priority level. Both forked processes have
higher priority than the main process now. If they terminate, the main process comes
back to life and finishes the benchmark test by printing the results.

The main test takes place between the new created processes.4 As mentioned
above, the main test is implemented in two different variants. One uses the POSIX
signal mechanism for triggering the higher priority task. The implementation is not
shown here, since it is similar to the task preemption latency benchmark test for the
Linux operating system (see Listing 6.8). The other version of the test uses a QNX
channel for triggering the higher priority task. Listing 8.5 shows the main routines
for both tasks. After performing the startup synchronisation as mentioned above
(MsgSend()), the benchmark test starts with entering the for loop. task_low

writes to a channel (srv_coid) for waking up the higher priority task task_high

which was previously blocked on reading from that channel (MsgReceive()).

void task_low(int idx, struct tsc_tab *res) {
switch_...event.c

...

for (i = 0; i < LOOP_COUNT; i++)

rdtsc_32(tsc[i]);

MsgSend(srv_coid, NULL, 0, NULL, 0);

...

for (i = 0; i < LOOP_COUNT; i++) {

busy_long();

cpuid();

rdtsc_32(tsc[i]);

MsgSend(task_coid, NULL, 0, NULL, 0);

}

for (i = 0; i < LOOP_COUNT; i++)

res->tsc[idx][i] = tsc[i];

...

}

void task_high(int idx, struct tsc_tab *res) {

...

for (i = 0; i < LOOP_COUNT; i++)

rdtsc_32(tsc[i]);

MsgSend(srv_coid, NULL, 0, NULL, 0);

for (i = 0; i < LOOP_COUNT; i++) {

busy_long();

m = MsgReceive(attach->chid, NULL, 0, NULL);

rdtscp_32(tsc[i]);

cpuid();

4See Section 5.4.3.2 for further explanation.

119

Chapter 8. Case Study 3: QNX Neutrino

MsgReply(m, 0, NULL, 0);

}

for (i = 0; i < LOOP_COUNT; i++)

res->tsc[idx][i] = tsc[i];

...

}

Listing 8.5: QNX task test preemption benchmark test

The benchmark test was executed in the 3 scenarios described in Section 5.3.
Table 8.5 and Table 8.6 show the results of the test. As one can see the QNX
implementation of the POSIX signaling mechanism has an impact on the execution
time. Using a QNX channel for triggering the higher priority task is faster by a factor
of about 2.5.

Scenario Average Min Max Gap Deviation

Normal 0.419 0.401 1.858 1.457 0.128

CPU utilization 0.456 0.416 3.944 3.528 0.231

I/O utilization 1.461 0.434 6.783 6.349 0.591

Table 8.5.: Benchmark test results [μs]: QNX preempt task (event)

Scenario Average Min Max Gap Deviation

Normal 1.004 0.946 3.645 2.700 0.316

CPU utilization 1.030 0.946 4.851 3.905 0.384

I/O utilization 3.023 1.056 8.169 7.113 0.850

Table 8.6.: Benchmark test results [μs]: QNX preempt task (signal)

The second benchmark test for measuring the task switch latency is also described
in Section 5.4.3.2. As explained in Section 6.5.2 the arrangement of the shared memory
segment is more complicated compared to the task preemption time benchmark test.
The layout for the shared memory segment can be seen in Listing 6.9.

The test startup is almost the same as for the task preemption benchmark test
before. Details are not printed here. All processes needed for the test execution are
forked within the main process and use the same synchronisation mechanism (channels
as events). The actual task switch is invoked by calling the sched_yield() system
call.

Table 8.7 presents the results of the task switch latency benchmark test for the
QNX Neutrino operating system with two alternating processes. The same test was
repeated with 16 (Table 8.8), 128 (Table 8.9) and 512 (Table 8.10) switching processes.
As can be seen, the time required for a task switch increases with more involved
processes.

120

8.4. Benchmarking

Scenario Average Min Max Gap Deviation

Normal 0.440 0.406 3.042 2.637 0.176

CPU utilization 0.463 0.423 3.450 3.027 0.196

I/O utilization 1.129 0.434 3.607 3.172 0.547

Table 8.7.: Benchmark test results [μs]: QNX switch task (2 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.465 0.420 2.750 2.330 0.196

Table 8.8.: Benchmark test results [μs]: QNX switch task (16 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.639 0.507 6.222 5.715 0.583

Table 8.9.: Benchmark test results [μs]: QNX switch task (128 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.824 0.539 20.260 19.722 2.008

Table 8.10.: Benchmark test results [μs]: QNX switch task (512 tasks)

8.4.3. Task Creation Test

The task creation benchmark test measures the time it takes for creating a new process.
According to the description in Section 5.4.3.3 a new task is spawned in each test
step within the test main loop by calling the fork() system call. Time is measured
immediately before and after (in the new process) invoking fork(). For transferring
the second measurement value to the main process a shared memory segment is used.
The implementation for the task creation benchmark test is not shown here, since
it is almost the same as already described in Listing 6.11. Like for a Linux system,
a new created process in QNX inherits the priority level and the scheduling policy
of the parent process. The new process is an exact duplicate of the calling process
except some points which are not discussed here. The new process will also start in
the same partition like the parent process. Unlike the Linux operating system, the
new created process is not put at the start of the FIFO run-queue. A additional call of
the sched_yield() system call is needed and thus included in the time measuring.

The results of the task creation benchmark test are shown in Table 8.11.

8.4.4. Interrupt Tests

The implementation of the three interrupt benchmark tests as described in Sec-
tion 5.4.3.4 are explained in this section. For the interrupt latency benchmark test and

121

Chapter 8. Case Study 3: QNX Neutrino

Scenario Average Min Max Gap Deviation

Normal 186.772 174.839 206.366 31.527 5.008

CPU utilization 170.843 147.151 251.214 104.064 18.120

I/O utilization 329.973 229.736 379.933 150.197 31.121

Table 8.11.: Benchmark test results [μs]: QNX task creation

the interrupt dispatch latency benchmark test an interrupt handlers that will be regis-
tered on the parallel port interrupt is needed. Listing 8.6 shows the implementation
of the interrupt handler for the interrupt latency benchmark test.

const struct sigevent *handler(void *arg, int id) {interrupt_isr.c

...

InterruptLock(&spinlock);

rdtscp_32(tsc);

cpuid();

clear_parport_interrupt();

*((uint32_t *)arg) = tsc;

id = id;

InterruptUnlock(&spinlock);

return NULL;

}

Listing 8.6: QNX interrupt benchmark test handler

The interrupt handler just captures the current value of the TSC register as early as
possible and returns. Values between the main benchmark test and the measurements
inside the interrupt handler are transmitted via a shared variable. This is possible
because the interrupt handler is connected to the context of the thread it is contained
within (Section 8.2.2).

With the introduced interrupt handler, measuring the interrupt latency is quite
simple. The interrupt latency benchmark test main loop is similar to the test for the
Linux operating system (Listing 6.14). The results of the benchmark test are shown
in Table 8.12.

Scenario Average Min Max Gap Deviation

Normal 6.291 4.724 7.772 3.048 0.436

CPU utilization 6.287 4.735 7.802 3.067 0.380

I/O utilization 5.871 4.801 7.840 3.040 0.626

Table 8.12.: Benchmark test results [μs]: QNX interrupt latency (ISR)

The interrupt dispatch latency benchmark test is similar to the interrupt latency
benchmark test except of the time measurement points. For this test the first value
is captured within the handler. The second time value is gathered when returning
from interrupt. The interrupt handler for this test is modified in the way, that the

122

8.4. Benchmarking

TSC register is taken as late as possible. The results of the interrupt dispatch latency
benchmark test are provided in Table 8.13.

Scenario Average Min Max Gap Deviation

Normal 1.348 1.161 5.232 4.071 0.514

CPU utilization 1.429 1.157 7.528 6.371 0.782

I/O utilization 2.271 1.218 6.635 5.416 1.130

Table 8.13.: Benchmark test results [μs]: QNX interrupt latency (dispatch)

For the interrupt to task latency benchmark test an additional thread is created
which is acting as a second level interrupt handler. As described in Section 8.2.2 QNX
provides a signaling mechanism for interrupts which occur. The threaded handler
registers for events from the parport interrupt. A call to InterruptWait will block
the thread until an event from this interrupt is sent. The implementation of the
interrupt handler thread is shown in Listing 8.7.

void *int_thread(void *arg) { interrupt_slih.c

...

if (0 > setup_rt(RT_PRIO +1))

exit(EXIT_FAILURE);

if (0 > set_affinity(BENCHMARK_CPU))

exit(EXIT_FAILURE);

SIGEV_INTR_INIT(&event);

id = InterruptAttachEvent(PARPORT_IRQ, &event, 0);

while (1) {

InterruptWait (NULL, NULL);

rdtscp_32(data);

cpuid();

InterruptUnmask(PARPORT_IRQ, id);

}

}

Listing 8.7: QNX interrupt benchmark test threaded handler

The interrupt to task latency benchmark test is identical to the interrupt latency
benchmark test and is not listed here. The results of the test are shown in Table 8.14.

Scenario Average Min Max Gap Deviation

Normal 9.967 9.127 13.313 4.185 0.997

CPU utilization 10.109 9.157 14.078 4.921 1.092

I/O utilization 10.607 9.123 14.971 5.848 1.228

Table 8.14.: Benchmark test results [μs]: QNX interrupt latency (SLIH)

123

Chapter 8. Case Study 3: QNX Neutrino

8.5. Summary

The kernel structure of Neutrino has little in common with the Linux operating system.
The microkernel design is taken as an inspiration for some aspects of the operating
system extension introduced later in Chapter 11 (system-call handler threads). Further,
the partitioning mechanism and the interrupt handling explained in this chapter will
be discussed again in a modified form for our new operating system.

124

Part III.
A Hard Real-Time Linux

Operating System

125

9
Requirements Discussion

Traditional real-time operating systems like QNX Neutrino have been designed to
fulfill real-time requirements inherently. In contrast to QNX, Linux was initially
designed around fairness and good average performance. It does not provide (hard)
real-time capabilities to its applications. In the previous case studies we have analysed
two different variants of how real-time can be introduced to Linux. Based on these
analyses together with the QNX Neutrino case study we can outline a list of features
required for real-time operating systems:

Preemtable kernel If a high priority task becomes ready for execution the operating
system has to be able to switch as soon as possible from a low priority task to
the new higher priority task. In older Linux versions a task inside the kernel (e.g.
system-call) could not be preempted by any other task before it has left the kernel.
Since Linux version 2.6 the kernel implements the preemptible kernel design whereby
a task can be scheduled even if it is currently on a kernel path. Kernel preemption
remains disabled in many situations inside the kernel, for instance if a task holds
any exclusive resource (spin-lock). The RT-Preempt Linux extension addresses
this issue by turning many spin-locks into preemptible alternatives. For the HLRT
approach this situation can not occur since tasks are isolated on CPUs. QNX
Neutrino solves this problem by executing almost all operating system services in
task context (microkernel design).

Strict task priorities Sharing resources in the system, especially CPU time, be-
tween various tasks need to be adjustable. Normally this is done by assigning a
priority level to a task. The tasks are scheduled according to their priorities. In
QNX a more refined method is shown which allows the combination of tasks to
groups (partitions). These groups introduce a new priority level on top of the task
priorities and provide greater adjustability in the system wide scheduling. HLRT
also implements a simple way of partitioning. Each real-time task constitutes its
own partition which is assigned exclusively to one CPU.

The extension of the Linux kernel with real-time features means that real-time
applications interact with other non-real-time components within the same system.
A strict distinction between real-time and non-real-time is required for a real-time

127

Chapter 9. Requirements Discussion

Linux system. Grouping tasks to partitions will be the basis for addressing this
requirement in the operating system introduced in the next chapters.

The previously introduced preemptible kernel design allows a low priority task to
be preempted whilst holding an exclusive resource. A higher priority task which is
requesting this resource can be delayed by the lower priority task (priority inversion,
Section 6.2.1). Because exclusive resources can be found at many places inside the
Linux kernel, it is absolutely necessary to deal with this problem.

Interrupt routing In addition to strict task priorities it is necessary for a real-time
operating system to provide a way to reduce the opportunity for unrelated activities
to interrupt a task on a high priority level. Furthermore some sort of prioritization
for interrupt (handlers) is needed in order to assure stable interrupt latency. The
RT-Preempt patch implements interrupt handlers as threads which have a static
priority assigned and thus can be sorted into the task priority hierarchy. However,
some interrupts cannot be executed in task context and remain as non-preemptible
kernel paths. Since interrupt handlers also request locks for exclusive resources,
this interferes with strict task priority scheduling. The HLRT extension provides
an interrupt routing mechanism which addresses the problem of interrupting high
priority tasks but does not support any solution for assigning priority levels to
interrupt handlers.

The previous analyzes of existing real-time solutions have shown how these features
are implemented for the particular systems. From these implementations we can
identify some requirements for real-time operating systems, which will be discussed in
this chapter. The requirements are derived from the investigation of these systems
and summarized in Table 9.1.

Id Name Text

REQ_0001 Support for real-time tasks A task can be defined to be a real-time task. This sets
the real-time task apart from non-real-time tasks. A
distinction between real-time tasks and non-real-time
tasks is possible.

REQ_0002 Priority levels for real-time
tasks

A priority level can be assigned to a real-time task.
The priority of a real-time task reflects its importance
in the system.

REQ_0003 Real-time tasks are preemp-
tive

A real-time task with a higher priority level interrupts
the execution of a real-time task with a lower priority.
A lower prioritized task cannot interrupt a real-time
task on a higher priority level.

REQ_0004 Real-time tasks are preferred Real-time task priority levels are always at a higher
level compared to non-real-time task priority levels.

REQ_0005 Synchronisation of real-time
tasks

Real-time tasks can be synchronized in a way that
does not affect other real-time tasks.

REQ_0006 Timing constraints of real-
time tasks

A deadline can be specified for a real-time task. When
the deadline passes, the task must have performed a
special call to signal the compliance of the deadline.

128

Id Name Text

REQ_0007 Periodic real-time tasks The deadline for a real-time task can be taken as a
period. The task can be scheduled according to that
period. The task is suspended from the compliance
of the deadline to the start of the next period.

REQ_0008 Detection of missed dead-
lines

Missed deadlines of a real-time task must be visible
to that task. A signalling mechanism is needed to
interrupt the normal execution of the task in case of
a missed deadline.

REQ_0009 Real-time task partitioning Real-time tasks can be combined to groups.

REQ_0010 Grouped real-time tasks are
isolated

A real-time task in one partition can not handicap
the execution of real-time tasks in other partitions.

REQ_0011 Timing constraints of parti-
tions

The task scheduling within a partition can be ad-
justed and can be distinguished between other parti-
tions.

REQ_0012 Resource management System resources can be assigned exclusive to a cer-
tain partition and thus to the appropriate real-time
tasks.

REQ_0013 Interrupt splitting Interrupts are divided into a hardware depended and
a processing section.

REQ_0014 Routing of hardware de-
pended interrupt sections

Treating the hardware depended section of occur-
ring interrupts can be linked to specific CPUs in the
system.

REQ_0015 Routing of interrupt process-
ing sections

The processing section of an interrupt can be linked
to specific CPUs in the system.

REQ_0016 Scheduling of interrupt pro-
cessing sections

The processing section of an occurring interrupt can
be scheduled in a way that a real-time task cannot
be interrupted by that interrupt.

REQ_0017 User control of system re-
sources

A real-time task must be able to adjust all parameters
that are significant for executing that task.

REQ_0018 Adjustable priority levels for
real-time tasks

The Priority level of a real-time task can be adjusted
at runtime.

REQ_0019 Specify paging or process
swapping of real-time tasks

A mechanism for memory locking is provided to pre-
vent the memory of a real-time task from being paged
to the swap area.

REQ_0020 Composition of real-time
tasks

The grouping of real-time tasks to partitions can
be changed at runtime. A real-time task can be
transferred between partitions.

REQ_0021 CPU affinity of real-time
tasks

A real-time task can be bound to a certain CPU in
the system. The task will not be executed on another
CPU. This prevents the task from being migrated
between CPUs.

REQ_0022 Availability of runtime prop-
erties of real-time tasks

Runtime properties of a real-time task must be visible
for that task. The task can know its priority level,
the partition assignment and the current time within
a specified task period.

Table 9.1.: Listing of determined requirements

129

Chapter 9. Requirements Discussion

There are different ways for an operating system to obtain real-time capabilities.
Not all of the listed requirements in Table 9.1 have to be implemented to provide
at least partial real-time support. For example, an operating system can support
real-time scheduling with compromise on real-time task partitioning. However, this
would mean a lack of functionality, as will be seen later in this chapter.

9.1. Analysis

The requirements from Table 9.1 and their relationships are shown in Figure 9.1.
Three main paths can be identified, each starting from REQ_0001, REQ_0013 and
REQ_0017.

Figure 9.1.: Real-time operating system requirements

As mentioned above it is necessary to distinguish between real-time and non-real-
time tasks (REQ_0001) in a patched Linux kernel. (This requirement is meaningless
for the QNX Neutrino operating system.) It constitutes the needs for task priority
levels (REQ_0002) and task preemption (REQ_0003) and introduces a requirement to
provide task partitioning (REQ_0009). Partitioning allows to assign system resources
exclusivly to a group of tasks (REQ_0012) and provides strict separation of task
execution in different partitions (REQ_0010).

130

9.2. Coverage

Since real-time tasks have an assigned priority level it is necessary to allow this pri-
ority to be adjustable (REQ_0018). Together with other requirements like preventing
the memory of a real-time task from being paged to the swap area (REQ_0019) a
requirement can be identified that grants access to runtime properties of a real-time
task (REQ_0017).

The need to control interrupts in a more flexible way than it is supported by the
native Linux kernel is presented in REQ_0013. The hardware depended section of an
interrupt (REQ_0014) as well as the processing section (REQ_0015) can be assigned
to certain CPUs in the system. In addition to it the processing section of an interrupt
can be scheduled in a way that a real-time task cannot be preempted by that interrupt
(REQ_0016).

Requirement REQ_0006 describes that a real-time task can have an assigned
deadline. Based on this the periodic task model (Section 3.1.3) is introduced into the
system (REQ_0007). Furthermore it must be possible for a real-time task to react
accordingly if a deadline was missed (REQ_0008).

9.2. Coverage

Table 9.2 shows the requirement coverage for the operating systems which have been
described previously.

RTOS R
E
Q
_
0
0
0
1

R
E
Q
_
0
0
0
2

R
E
Q
_
0
0
0
3

R
E
Q
_
0
0
0
4

R
E
Q
_
0
0
0
5

R
E
Q
_
0
0
0
6

R
E
Q
_
0
0
0
7

R
E
Q
_
0
0
0
8

R
E
Q
_
0
0
0
9

R
E
Q
_
0
0
1
0

R
E
Q
_
0
0
1
1

R
E
Q
_
0
0
1
2

R
E
Q
_
0
0
1
3

R
E
Q
_
0
0
1
4

R
E
Q
_
0
0
1
5

R
E
Q
_
0
0
1
6

R
E
Q
_
0
0
1
7

R
E
Q
_
0
0
1
8

R
E
Q
_
0
0
1
9

R
E
Q
_
0
0
2
0

R
E
Q
_
0
0
2
1

R
E
Q
_
0
0
2
2

RT-Preempt � � � � � � � � � � � � � �
HLRT � � � � � � � � � � �
Neutrino � � � � � � � � � � � � � � � �
HRTL �

Table 9.2.: Requirements coverage

The RT-Preempt extension does not provide the definition and tracking of deadlines
for real-time tasks. Moreover, no partitioning is implemented. Thus, the appropriate
requirements are missing for the RT-Preempt Linux system. Since real-time tasks
use the SCHED_RR or the SCHED_FIFO scheduling policy, they are separated from
non-real-time tasks. Periodic real-time tasks can be realised by using an interval timer,
programmed with setitimer().

Real-time tasks in a HLRT patched kernel do not need any priority levels, since they
are executed on a reserved CPU and cannot be interrupted. The question if another
task has a higher priority does not arise. The kernel is not changed by the patch in
order to introduce preemption. Instead the Linux based preemption model that comes
with all kernel versions starting from 2.6 needs to be disabled. As mentioned above,

131

Chapter 9. Requirements Discussion

HLRT does not provide any features for scheduling threaded interrupt handlers with
real-time priorities. The periodic task model is implemented by the HLRT kernel but
there are no possibilities for a real-time task to determine the current elapsed time of
the current period.

QNX Neutrino does not distinguish between real-time and non-real-time tasks.
Neutrino cannot be compared to the Linux patch variants in this case, because it
implements a completely different design. However, similar to Linux systems, every
task in Neutrino has an assigned priority level and is scheduled according to that
priority.

132

10
Hard Real-Time Linux System
Design

Based on the previous discussions of real-time operating systems, a list of requirements
has been identified. This chapter presents a design for an extension to the Linux
kernel that combines all these requirements.

10.1. Overview

In order to meet the identified requirements in Chapter 9, the Linux kernel must
be modified in several ways. Each of the previously studied real-time operating
systems have contributed to the system design. For example, the partitioning concepts
discussed in Section 10.3 are inspired by the QNX Neutrino adaptive partitioning
scheduler (Section 8.3). The CPU reservation mechanism from the HLRT extension
(Section 7.2) builds the basis for the concepts introduced in Section 10.2. On top of
the CPU reservation paired with a partitioning strategy the idea of threaded interrupt
handlers from the RT-Preempt extension (Section 6.3) gets introduced into the system
design.

In the hard real-time Linux design discussed in this chapter, a higher-level scheduling
unit is introduced. Each real-time task can be assigned to a defined scheduling group;
a task becomes a real-time task when it is assigned to a scheduling group. The
time-triggered static schedules for this groups (static scheduling groups) are developed
off-line. Each group is assigned to one CPU and has a defined computation time. A
group cycle for a CPU is the sum of all computation times of the groups associated
to this CPU. An example for a schedule with groups for several CPUs is shown in
Figure 10.1.

Group cycles on different CPUs are independent of each other. However, they can
be synchronised under the consideration of some limitations. Each (static) group
belongs specifically to one cycle and thus is assigned specifically to one CPU. The
system group presents a special case. This group is reserved for the basic Linux system
and dynamic scheduling groups. The system group can be defined on several CPUs
and can therefore belong to more than one cycle. At least one CPU (system CPU)

133

Chapter 10. Hard Real-Time Linux System Design

CPU 1 Group 1.1 Group 1.2 System Group

Group Cycle CPU 1

CPU 2 Group 2.1 Group 2.2 Group 2.3 Group 2.1 Group 2.2
. . .

Group Cycle CPU 2

CPU n System Group

Real Time

Figure 10.1.: Hard real-time Linux scheduling groups (Example 1)

must not host any groups (not shown in Figure 10.1). This is important to handle
sporadic Linux tasks and events such as interrupt handler.

A group cycle is combined with some other properties to an object called core.
Each CPU in the system can host exactly one core (except of the system CPU). If a
core is assigned to a CPU, the normal Linux scheduling for that CPU is deactivated
(CPU reservation). A reserved CPU is completely isolated from the Linux system
including interrupt handling. If the assigned core contains one or more system groups,
the Linux scheduler will be free to schedule tasks within the related time slot of these
groups. In order to reserve a CPU, a core must be selected which will be assigned to
that CPU together with a CPU profile. A profile can be assigned to several CPUs
while a core can only be hosted by one CPU.

10.2. CPU Reservation

On a system with n CPUs the HRTL system allows n−1 CPUs to be reserved. Unlike
the HLRT extension a reserved CPU is not claimed by a single task. Instead, reserving
a CPU extends the running HRTL partitioning core (Section 10.3) with an additional
resource for scheduling groups. It is not possible for the Linux system to schedule
any task on a reserved CPU and thus interrupt the partitioning scheduler.1 The
modifications to the Linux kernel that are needed to allow the reservation of a CPU
are discussed in Section 11.4 and Section 11.5.

To reserve a CPU, a static group scheduling plan is required. This plan is provided
by a group cycle (core). Details for group cycles can be found in Section 10.3.2. A
CPU can only be reserved in combination with such a scheduling plan.

1This constraint is discussed in Section 10.3.1.

134

10.2. CPU Reservation

10.2.1. Interrupt Routing

All maskable interrupts are disabled for a reserved CPU. The running static group
scheduling plan can reenable interrupts for its CPU. This can be triggered from a
real-time task running in one of the groups included in the plan. Thus it is possible
to book individual CPUs for the processing of certain interrupts.

The clock interrupt is disabled after a CPU becomes reserved. This depends on
the underlaying hardware. A last time tick interrupt is received after the reservation
phase is completed. This tick initiates the group cycle. The group scheduler is
then responsible for adjusting and calculating timer interrupts in order to keep the
scheduling plan working.

The Linux system is not allowed to send any kind of interruption to a reserved
CPU. For that reason, APIC inter processor interrupts (IPI) must be intercepted and
handled in a special way. Since the HRTL task scheduling subsystem and the group
scheduler use IPI calls for synchronisation, they can not just be ignored. Whenever
a non reserved CPU tries to interrupt a reserved CPU by sending an IPI call, this
call is taken to a queue and handled later at a time when the core running on that
reserved CPU decides it.

10.2.2. CPU Profiles

A CPU profile defines the clock source and the time keeping that should be used for a
reserved CPU. In the HRTL system it is possible to define several modules for these
services. They will be considered in Section 11.3. One CPU profile can be taken
for several reserved CPUs. Once constituted, a CPU profile can not be changed on
a reserved CPU. It is selected together with a static group scheduling plan in the
reservation process.

Besides the timing services a CPU profile also handles deadline tracking for real-time
tasks running in combination with this profile. The HRTL system provides an interface
to get information about real-time deadlines from user space. The verbose level for
notifications about deadlines can be adjusted. It is possible to see which deadlines are
defined and if they are met or missed together with timing information. Since CPU
profiles can be used for several reserved CPUs simultaneously, special care must be
taken when transmitting deadline states from a CPU to a profile. A method which
enables handling concurrent deadline states without blocking the transmission of a
deadline is presented in Section 11.6.5.

A CPU profile represents the bottom level of the task creation hierarchy as described
in Section 10.4. Here, it can be defined in which scheduling group new created tasks
should be placed. This rule can be overwritten at two other points in the hierarchy as
will be shown later.

10.2.3. Housekeeping

Some mechanisms in the Linux kernel require a periodic treatment even on reserved
CPUs. For instance, the read-copy update implementation in the Linux kernel needs

135

Chapter 10. Hard Real-Time Linux System Design

each CPU to achieve a quiescent state at times. The right time to go through such
a state is during a housekeeping phase. It is up to the core running on a reserved
CPU to invoke a housekeeping phase. The work to be done in a housekeeping phase
is organized in event queues. Achieving a quiescent state is only one event in a
queue. The queue for IPI calls, which was previously described is also handled during
housekeeping. The CPU houskeeping framework for the HRTL system provides the
following housekeeping events:

Inter processor interrupts call pending IPI calls for this CPU.

Read-copy update achieving a quiescent state. All local references shared to data
structures have been lost and no assumptions are made based on their previous
contents.

Kernel print flushing the kernel message buffer. This will provide pending kernel
messages for the log daemon.

Scheduling (group and core) perform group scheduling related housekeeping ac-
tions. This will be discussed in Section 10.3.2.

Each reserved CPU has its own housekeeping object that manages the queues
described. Which of the queues are going to be processed during a housekeeping phase
can be defined with a bit mask. This means that not all queues have to be treated in
each housekeeping phase. Further, the events inside a queue are sorted by priorities.

10.3. Partitioning

In the hard real-time Linux system design, a partition is represented by a scheduling
group. Partitions are protected memory areas with distinct task scheduling strategies.
Different types of scheduling groups are discussed in Section 10.3.1. Each real-time task
belongs to a group. The task behavior and scheduling inside a group are managed by
a real-time task scheduler which is discussed in Section 10.4. Further, communication
between real-time tasks and kernel subsystems (via system-calls) can be directed to
other partitions (Section 10.3.4). Tasks are completely isolated in their group and can
not interfere with the overall group scheduling.

10.3.1. Scheduling Groups

A scheduling group defines the overall time behavior for real-time tasks which are
associated with this group. Further, CPU affinity and system-call redirection are
specified for real-time tasks through adjustable parameters of scheduling groups. Two
different types of scheduling groups can be differentiated:

Static groups have fixed time slices in which associated tasks can be scheduled. A
static group is connected to a core object at runtime and receives a static time slot

136

10.3. Partitioning

inside the core scheduling plan which conforms with the group’s time slice. The
length of the core scheduling plan (group cycle time) dictates the period of the
group. Once assigned to a core object, the group’s time slice is active in every core
cycle during the associated time slot and will not move inside the core scheduling
plan. Thus, each static group has a fixed runtime (time slice) and a fixed period
(runtime of the core scheduling plan).

The overall time slice for a group (runtime) is divided into an execution and an idle
part. The execution part represents the available time slice for scheduling tasks
connected to the group. Generally, the idle part is much smaller than the execution
part. It can be defined to be zero which means that the execution part equals the
group’s runtime. If defined, the idle part provides time for performing housekeeping
events (Section 10.2.3).

As mentioned in the introduction to this chapter, two kinds of static groups are
distinguished. The properties described above are valid for both group types:

System groups All tasks that are not defined to be real-time run as normal Linux
tasks. Together with Linux main system kernel threads they are executed in
system groups. It is the role of the Linux scheduler to balance these tasks to
different CPUs. The Linux scheduler needs to be extended that the execution
time of each system group and the group cycle time of the corresponding core can
be taken into consideration for load balancing. For example, the situation shown
in Figure 10.1 defines three different groups to CPU 1. A load level of about 75%
must be shown to the Linux scheduler for this CPU. Ground up using this basis,
a reasonable load balance can be made by the Linux scheduler for the system.

System groups provide time slots for the Linux scheduler as well as for dynamic
real-time partitions. Actually, the Linux scheduler is seen as a dynamic group
which shares the available runtime together with other dynamic groups. If a
system group is replaced by another group inside a core object, the system group
becomes invalid and the associated memory objects are freed.

Real-time groups Real-time groups can exist beside system groups on different
CPUs. For the group scheduler there is no difference for handling system groups
and real-time groups. However, both types behave differently in detail. The task
behavior inside a real-time group is managed by a real-time scheduler. Unlike
system groups real-time groups are not managed or influenced by the core Linux
system or the dynamic group scheduling. Moreover, they are either active and
thus included into a core scheduling plan2 or they are inactive. In contrast to
system groups a real-time group is valid if it is not assigned to a core object.

Dynamic groups have a minimum percentage of available CPU time allotted (bud-
get). The available CPU time is given by the time slots provided by system groups.
Each system group extends the available CPU time by its execution time slot
(excluding the idle time). The normal Linux task scheduler is executed inside the

2The scheduling plan can still be inactive in case it is not assigned to a CPU.

137

Chapter 10. Hard Real-Time Linux System Design

dynamic Linux group. Unlike static groups a dynamic group is not assigned to a
certain core object and thus it is not bound to a specific CPU. The dynamic group
scheduler manages all available time slots and decides which dynamic group will
receive how much of CPU time (Section 10.4.4). The budget for a dynamic group
is given by two values:

Budget for reserved CPUs ensures a specified minimum share of time in system
groups when the system is overloaded. It is guaranteed that a dynamic group
will receive this budget. If the system is not overloaded, the remaining CPU time
is shared between all dynamic groups. The Linux scheduler is executed if no
dynamic group can be executed. Thus, the Linux group has a budget for reserved
CPUs equal to zero and is only executed on reserved CPUs if the system is not
overloaded.

Budget for non-reserved CPUs specifies a maximum share of time on unre-
served CPUs. A group that has runnable tasks will receive exactly this percentage
of CPU time provided enough tasks for all available CPUs are ready for execu-
tion. The concept of sharing the remaining CPU time in a system which is not
overloaded is not followed here. The Linux group always receives CPU time that
is not used by other groups.

Several properties can be assigned to scheduling groups. They will be discussed
in the following sections. Some features only make sense for one kind of scheduling
group. For instance, dynamic groups do not have assigned idle time slots.

10.3.2. Group Cycles

The static groups assigned to a core object build a group cycle (or group scheduling
plan). Each static group associated with a scheduling plan receives a static time slice
inside the plan. The order of time slices (for static real-time groups) of a plan will not
change. The group scheduler which is responsible for changing the active group uses
a timer interrupt to preempt the execution of the current group. A running group
is only preempted by the group scheduler in order to change the active time slot. If
there is only one group defined for a scheduling plan, this group is not interrupted by
the group scheduler (provided the group and the core object do not define any idle
time slots). The timer interrupts (scheduling points) are calculated once before the
scheduling plan is started. Each scheduling point is defined by an offset which will be
added to the last scheduling point in order to determine the exact time for the next
interrupt.

A static group contains four scheduling points. Two for each time slice (execution
and idle) to denote the start and stop of the time slice. A scheduling point is
implemented as an event which is included in an event queue. Each event queue has
an associated timer which is programmed according to the description above. Thus,
the four scheduling points for a static group will invoke three timer interrupts, because
the stop of the execution part and the start of the idle part are located in the same

138

10.3. Partitioning

event queue. The next static group will share one event queue for its start event with
the stop event from the previous one. A detailed discussion of the group scheduler
implementation can be found in Section 11.6.

Each point in time in a group cycle is associated with a time slice of one static
group, whereby it applies that a static group is represented only once inside one cycle.
Free space of a scheduling plan is filled up by system groups. If a static real-time
group is added to a scheduling plan, the most appropriate system group is removed.
On the other hand, removing a real-time group from the plan will create a system
group that fits inside the blank. Bordering system groups are allocated into one group.

The group scheduler provides various events for the subsystems enclosed in a static
group. An event can occur inside the time slice of the group. Besides the start and stop
of a period, dynamic timers are also implemented. To define a timer a certain point
in time must be specified. This point in time is given by a combination of the period’s
number and the offset inside this period (this will be discussed in Section 11.1). If the
scheduling plan is already running on a CPU adding and removing groups generates
overhead, because expected timers may need to be canceled.3 Furthermore the fixed
scheduling points for a new group have to be calculated. These group scheduling
related housekeeping actions take place during the idle phase.

Each CPU has its own idle task. This task is scheduled in idle phases and every
time an active real-time group can not schedule a real-time task. Housekeeping actions
are also performed by this task.

10.3.3. Threaded Interrupt Handling

A processing section of an interrupt (Chapter 9) can be assigned to a static scheduling
group or a scheduling plan. The interrupt is then executed by the idle task (not during
housekeeping). The execution of the normal group task scheduling is interrupted and
the idle task is executed (if the priority level allows it). Thus, the idle task implements
a queue for occurring interrupts and can alter its priority. The interrupt handler
(hardware dependent part) enqueues a work package for the idle task connected to
the specified object (group or core) when the associated interrupt occurs.

10.3.4. System-Call Redirection

System-calls of tasks inside a real-time group (static real-time groups and dynamic
groups) can be directed to handler threads (Section 10.4.2.1). The group object
defines which system-calls are routed to which handler thread.4 A task that executes
a redirected system-call is suspended for this time and another task from the group
can be executed. The system-call invocation has an assigned priority level based on
the task priority inside the group. System-call redirection to handler threads allows
task (and group) scheduling with very low latency, because no kernel preemption is

3Adding a new group will replace a running system group.
4A similar routing exists for normal Linux tasks.

139

Chapter 10. Hard Real-Time Linux System Design

needed for a task that never follows a kernel path. The handler thread itself is treated
differently compared to normal real-time tasks and allows preemption at a high level.

10.4. Task Management

A task in the hard real-time Linux design becomes real-time when it is added to
a scheduling group. The task is then subject to the rules of the respective group.
Depending on the scheduling group different properties apply to real-time tasks which
will be discussed later in this section. A task can be added to a group either because
it is moved there as a running task or it is created from a task that is already running
with real-time scheduling. In both cases it must be specified where the new task
should be placed and which properties should be applied (e.g. deadlines, priority, . . .).
Since the POSIX API for creating new processes should not be changed in order to
adopt every application by the operating system, a standard configuration for new
tasks is located in the group object and the CPU profile. Also, every task can have a
configuration for processes it creates. If no standard configuration can be found, a
new task will inherit all properties including the scheduling group from its parent.

10.4.1. Events

For task synchronization and time tracking, the hard real-time linux operating system
provides some mechanisms which are accessible for real-time tasks. Other commu-
nication objects which are provided by the Linux core system are still available. As
described above, each static scheduling group has a assigned period and a fixed runtime.
A real-time task can get information about the current time inside its period. The
API for time tracking and the features described below are discussed in Section 11.9.1.

10.4.1.1. Synchronisation

Several fixed synchronisation points are provided by the operating system. For
instance, a real-time task can wait for the start of a new period of a static scheduling
group (including its own group). Besides this, events can be allocated from user space.
Each event has a unique Id and a key assigned. A task can register itself for an event,
the task will be suspended till the event occurs. The occurrence of an event can be
triggered from another task, from a scheduling point or from an interrupt.

10.4.1.2. Deadlines

A task can specify a deadline. Depending on the real-time scheduler implementation it
will be scheduled according to its deadlines. How a task signals the operating system
that it has met its deadline also depends on the scheduler module. The task that
defines a deadline receives a signal (SIGALRM) if it has missed its deadline. Thus, the
application can react on miscounted time behavior.

140

10.4. Task Management

The previously introduced CPU profiles allow the connection of a deadline watchdog
process to a profile. Different deadline events are generated from the tasks associated
with such a CPU profile. The watchdog collects these events periodically and makes
them available from user space. A deadline event consists of a timestamp and the
process Id of the task which caused the event. Additionally, a second time value
indicates the deviation from the expected time. Four different deadline events are
provided:

DEFINED A real-time task defines a deadline

UNDEFINED A real-time task releases a deadline

MISSED A real-time task missed its deadline

MET A real-time task met its deadline

10.4.2. Kernel Preemption

Chapter 9 introduced the need for a preemptible kernel. Unlike the QNX Neutrino
operating system, the Linux kernel is implemented as a monolithic kernel where all
operating system services are realised as system-calls. Based on the Linux preemptible
kernel design a strategy has been implemented to add greater flexibility for preempting
a task inside the kernel during executing a system-call.

10.4.2.1. System-Call Handler Threads

A thread that is not actually running in kernel mode can be preempted at any time.
Only when invoking a system-call the thread can be on a kernel path that may not be
preemptible. The hard real-time Linux design discussed in this chapter provides the
possibility of redirecting system-calls from tasks to system-call handler threads. These
handlers are threads which can be added to scheduling groups like every other task
too. A scheduling group can be connected with one or more system-call handlers, as a
result the addressed system-call sections (e.g. file system, IPC, . . .) will be redirected
to the handler threads. A scheduling group can be connected with a handler thread
running in that group.

Whenever a thread invokes a system-call a work package is sent to the associated
handler. According to the priority level of the sending task the package receives its
own priority level and is stored in a list. The calling thread is suspended during
system-call execution and another task can be scheduled in the group where the calling
thread belongs. The suspended task is woken up by the handler (put to the ready
queue) if the system-call execution is completed. When the thread is scheduled again
inside its group the invoked system-call returns with a result and the thread continues
running in user space.

System-call work packages have a specified entry point defined as a function. The
execution of a packages starts with calling the entry point function and ends with
returning from that function. During execution the stack segment of the suspended

141

Chapter 10. Hard Real-Time Linux System Design

thread (sending task) is used for local variables and function calls.5 Thus, it is possible
to preempt the execution of a work package and resume or start another one. If a
package is preempted, the current environment is saved in the work package memory
object and the stack segment is switched back. Depending on the cause for the
interruption the work package is put back to the package list or stored in another
place. The handler thread continues running with its own stack segment.

A system-call handler thread takes the work package with the highest priority from
its list of packages and either calls the entry point function in order to start a new
work package or switches to the previously saved environment in order to continue a
preempted work package. In case a new package arrives with a higher priority than
the one that is currently running, the current work package will be preempted and
the handler switches to the new package. Because a handler can be connected to
several partitions, a scheduling group has a own priority level assigned which is only
considered for system-call work packages.

A system-call handler thread executing a work package must not be suspended or
call the Linux scheduler function. The kernel must be prepared in several cases to
intercept these situations. If a work package suspends itself (i.e. changing the task
state) the package is marked to be suspended and is not put back to the package list.
A wake up on a suspended work package will put the package back to the list. If a
task switch is needed, the work package is put back to the list before the handler
thread calls the scheduler function.

Only work packages are seen by a system-call handler. No information about the
system-call itself (which is represented by the package) is needed. All details required
for executing a work package are stored inside the work package memory object. This
makes it possible to move packages between handlers. A handler can adopt a work
package from another handler. A preemption of an adopted package will put it back
to the list of the original handler thread.

10.4.2.2. Preemptible Critical Sections

The technique of directing system-calls to handler threads as described in the previous
section allows tasks to be preempted at any time. However, system-call handler
threads are only preemtible according to the standards of the Linux preemptible
kernel design. In order to achieve greater flexibility and to reduce scheduling latency,
the hard real-time linux design allows threads inside critical sections (spin-locks) to
be preempted under certain conditions. Only system-call handler threads can be
preempted inside a spin-lock if the thread does not explicitly disable preemption before
requesting the lock. It is still ensured that only one execution path enters a critical
section at the same time. To address the problem of priority inversion (Section 6.2.1) a
suspended work package which is inside a critical section can be adopted by every other
thread. A task that invokes a system-call without the involvement of a system-call

5Other segments and several memory references have to be switched. This will be discussed in
Section 11.8

142

10.4. Task Management

handler is also able to adopt the corresponding work package.
If a task is requesting a lock that is already blocked, the task either has to wait

until the critical section is released or adopts the work package that holds the lock
in case the package is preempted. If the requesting task has not explicitly disabled
preemption it will be suspended. Otherwise, the task is busy waiting on the lock
which means no scheduling takes place. Waiting tasks are organised in a priority
queue for each spin-lock. If a task releases a lock the highest priority task in the queue
gets the lock and continues executing. If a work package inside a lock gets preempted
the highest priority task is triggered in order to adopt this work package.

10.4.3. Scheduling in Static Groups

For handling tasks assigned to a static group, different strategies arise. One of these
strategies must be chosen for each group except system groups. The hard real-time
Linux implementation provides a modular design to extend the scheduling core with
new variants. In this section two variants of scheduling strategies will be discussed:

POSIX approach Each task has a priority level assigned between 0 and 64. The
scheduler arranges the tasks in a ready queue in order of their priority. Lower
priority tasks get interrupted by incoming higher priority tasks. Whenever a task
is ready to compute no task with a lower priority will be executed. Therefore
starvation of lower priority tasks is possible with large amounts of high priority
tasks queuing for CPU time. Waiting time and response time depend on the priority
of the task. Higher priority tasks have smaller waiting and response times (see also
Section 3.2.3.1).

Figure 10.2 illustrates a possible situation in example 1 (Figure 10.1). Two tasks
with the same priority level in Group 1.1 are scheduled with the FIFO strategy.

0 20 30 50 60 70 80

Group
1.1

T1 T2 T2 T1 T2

Group
1.2

System
Group

Real Time

Group Cycle Idle Time

Figure 10.2.: FIFO scheduling in Example 1

First, the scheduler decides to execute T1 until the task is blocked for some reason
at 20ms. At this time T2 starts execution. At 50ms a new group cycle for Group

143

Chapter 10. Hard Real-Time Linux System Design

1.1 starts. Assumed that T1 is ready for execution again, T2 can not be interrupted
by T1, because the task in execution can only be interrupted by a task with a higher
priority level. At 60ms T2 is blocked for some reason and T1 is executed again.

Rate-Monotonic scheduling The scheduling strategy must ensure that each task
can run for the denoted time in its period. The parameters of all periodic tasks are
known from the start (see also Section 3.2.2.2).

In the hard real-time Linux design described in this chapter, the rate-monotonic
algorithm is applied to tasks in scheduling groups. Since each group has its own
period in a static cycle the period Pi for a task Ti must be in relation to the group’s
period. A task in a scheduling group is described by a tupel Ti = (Pi, Ci), where
Ci is the computation time of the task given in milliseconds and Pi is the task’s
period given in counts of the group’s period. For example, from Figure 10.1 the
group 2.1 of CPU 2 is given with 3 tasks and a computation time of 10 milliseconds:
G = T1, T2, T3. The tasks in this group are defined with: T1 = (1, 2), T2 = (2, 7)

and T3 = (4, 12). The situation is shown in Figure 10.3.

0 2 4 6 8 10 30 32 34 36 38 40

Group
2.1

Group Cycle
Idle Time

60 62 64 66 68 70 90 92 94 96 Real Time

T1 T1

T1 T1

T2

T2

T3 T3

T3 T3

Figure 10.3.: RM scheduling in Example 1

CPU utilization for the given example is calculated with U = 0.85 (see Equation 3.1).
Equation 3.2 defines the upper bound for guaranteed schedule in a worst-case
scenario. One can easily see that the CPU utilization in the example is above this
bound: 0.85 �≤ 0.7798. This point will be discussed later in this section. Table 10.1
shows the calculated values for the 3 tasks of the example.

The algorithm chooses T1 to be executed at first because of the highest priority.
After that T2 follows before T3 starts. At 30ms T1 becomes ready for execution
again and T3 is suspended. In the end T3 finally finishes at 94ms and the CPU is
idle for 6ms before the run begins again. This meets the expectation that there is
15% remaining of available processor cycles given by a CPU utilization of 85%.

A slight change of the example shows that the task set can not be scheduled even
if the CPU utilization is below 1 (100%). The period of T3 now is changed to 3

144

10.4. Task Management

Task C P U p() Group cycle runtime

T1 2ms 1 → 10ms 0.20 1 1[2ms], 2[2ms], 3[2ms], 4[2ms]

T2 7ms 2 → 20ms 0.35 0.5 1[7ms], 3[7ms]

T3 12ms 4 → 40ms 0.30 0.25 1[1ms], 2[8ms], 3[1ms], 4[2ms]

Table 10.1.: RM scheduling in Example 1

T3 = (3, 12). The calculations are shown in Table 10.2. The CPU utilization for
the new example is now U = 0.95.

Task C P U p() Group cycle runtime

T1 2ms 1 → 10ms 0.20 1 1[2ms], 2[2ms], 3[2ms]

T2 7ms 2 → 20ms 0.35 0.5 1[7ms], 3[7ms]

T3 12ms 3 → 30ms 0.4 0.3 1[1ms], 2[8ms], 3[1ms] !

Table 10.2.: RM scheduling in Example 1 with unworkable task set

10.4.4. CPU Budget Based Scheduling

Tasks inside dynamic scheduling groups are scheduled according to their priority
level. Each dynamic group has a minimum percentage of available CPU time allotted
(budget). If none of the defined dynamic groups are running over budget the task
with the highest priority is chosen for execution. Details on the CPU budget scheduler
implementation can be found in Section 11.7.

The scheduler throttles CPU usage by measuring the average CPU usage of each
group. The average is computed over a time window (per default 500 milliseconds).
The current CPU usage is updated every 5 milliseconds (can be configured). This
means every 5 milliseconds the usage for this time is added to the usage for the past
495 milliseconds to compute the total CPU usage over the window. Thus, the time
window moves forward as time advances. According to the calculated CPU usage the
scheduler balances the groups to their guaranteed CPU limits.

The system is overloaded if all partitions are demanding their full budget. The
free time in a system which is not overloaded is shared between all partitions. An
exception to this is the normal Linux scheduler. It is encapsulated in the so called
Linux group. The Linux group will only receive additional time if no other task from
any dynamic real-time group can be executed.

Whenever there are groups demanding less than their budgets, the scheduler chooses
between them by picking the highest priority running task. Tasks are simply scheduled
by the FIFO or Round-Robin policy, where Round-Robin only adds a timing property
to the FIFO scheduling. In contrast to simple FIFO scheduling, a task (1) can be
preempted by a lower priority task (2) from another group, if the group for task 1
has overused its budget and the budget for the group of task 2 is still available. A

145

Chapter 10. Hard Real-Time Linux System Design

group can only use its assigned CPU budget fully, if at least one runnable task for
each CPU exists. For instance, a partition hosting only one task can only use 25% of
available CPU time if four CPUs are executing system groups simultaneously.

CPU 1

CPU 2

Real Time
Δt1 Δt2

system group real-time groupwindow

now

Figure 10.4.: Available CPU time (Example 2)

The available CPU time is provided by system groups. System groups can start
and stop at any time, thus the available time for calculating the average CPU usage
is not constant. Furthermore, the number of available CPUs can vary at runtime. It
is possible that no CPU time is available for a period of time (no system group is
running). The time window moves only over available CPU time, if no time is available
the window freezes till a system group starts execution. This situation is shown in
Figure 10.4. The overall window has a size of 500 milliseconds (Δt1 +Δt2 = 500ms).
It is also possible that new system groups are added or removed. The time window is
reset, if the last system group is removed from all scheduling plans in the system.

146

11
Description of the HRT Linux
Implementation

This chapter describes the implementation details of the design introduced in Chap-
ter 10. Only the key features of the hard real-time extension are discussed here. The
entire source code is available for download as a patch for kernel version 3.5.7. Later
in this chapter the implementation of the benchmark tests introduced in Section 5.4.3
for the HRTL extension are explained.

The complete HRTL kernel patch can be accessed at [Rad15a].
The real-time patch consists of modifications of the original Linux kernel in several

parts of the kernel source code. All modifications are visible as conditional compilation
parts enabled by the CONFIG_HRTL_* macros. Whenever possible new functions or
even totally new sections are placed into separated files inside the source tree. At the
very top level of the sources a number of directories containing the main parts of the
extension can be seen:

hrtl The main HRTL kernel code

arch/x86/hrtl The architecture specific HRTL kernel code

include/hrtl The header files with global definitions

Almost all globally visible objects and functions have the prefix hrtl_ assigned.
Thus, it is easily possible to identify changes made by the patch. However, some new
features do not fit into this scheme (i.e. the SCHED_HRTL scheduling class). Changes
that cannot be identified by the rules introduced are indicated in this chapter.

Basic system settings are summerized in the defines.h header file. According
to the description above, the file can be found in include/hrtl. The file includes
mainly default values for variables which will be part of the discussions in this chapter.

11.1. Global Objects and Data Types

The implementation of the HRTL extension introduces some new basic types and
global data objects to the Linux kernel. Some of them are used in several parts of the
source code. Basic type definitions can be found in include/hrtl/types.h.

147

Chapter 11. Description of the HRT Linux Implementation

hrtl_key_t, hrtl_id_t are unsigned integer types. A key (hrtl_key_t) is a
user defined value which must be in a defined range hrtl_key_range (minimum
and maximum). An id is always chosen by the HRTL system. An invalid key or
id has the defined value HRTL_KEY_INVALID respectively HRTL_ID_INVALID.
Keys and ids are explained in detail later in Section 11.2.1.

hrtl_time_t describes a time value in the HRTL system. It is always a multiple
of HRTL_TIME_UNIT_NS (defines.h). A value of HRTL_TIME_INVALID indi-
cates an invalid time value. Various functions for translating time values are defined
in types.h. Listing 11.1 shows an example of how a clock time value is translated
to a HRTL time value and vice versa.

#define hrtl_time_to_ns(t) ((hrtl_time_t)(t) * HRTL_TIME_UNIT_NS)types.h

#define hrtl_ns_to_time(s) ((hrtl_time_t)((s) / HRTL_TIME_UNIT_NS))

Listing 11.1: HRTL time value translation (nanoseconds)

hrtl_period_t is a complex data type to define a point in time in a periodic
context. It includes a time offset and a period counter. Together with the period
length a distinct point in time is given (Listing 11.2).

static inline hrtl_time_t hrtl_period_to_time(hrtl_period_t period)types.h

{

return hrtl_period_get_count(period)

* hrtl_period_get_runtime(period)

+ hrtl_period_get_time(period);

}

Listing 11.2: Period to monotonic time

The HRTL subsystems (Section 11.3) and other parts of the kernel make use of data
types for storing time values in a organised queue. Types and access functions for
such a queue are defined in include/hrtl/timequeue.h. The implementation
is based on red black trees which are already provided as a library by the Linux
kernel (include/linux/rbtree.h). HRTL implements an interface to Linux red
black trees that takes account of the HRTL time type (hrtl_time_t). A time
queue is represented by the type hrtl_timequeue_head and contains elements of
hrtl_timequeue_node. Each node has an expiration time in the hrtl_time_t
format assigned. The nodes are sorted according to this time value. Only the node
with the nearest expiration time is accessible in constant time.

Some global variables containing information on the system wide CPU allocation are
introduced in include/hrtl/system.h. The use of these CPU masks is explained
later in this chapter.

hrtl_cpus_available available CPUs for HRTL

hrtl_cpus_system CPUs used by the Linux system

hrtl_cpus_allowed CPUs that can be reserved by HRTL

148

11.2. Management of Memory Objects

hrtl_cpus_reserved CPUs used (reserved) by HRTL

hrtl_cpus_free CPUs not used by HRTL but allowed

hrtl_cpus_linux CPUs used by the Linux scheduler

hrtl_cpus_dyn CPUs available for the budget scheduler

The boot process for HRTL related structures is divided into six stages. Initialisation
functions for HRTL structures are assigned to these subsections and executed during
system start up:

hrtl_initcall_boot, hrtl_initcall_early first run, no dependencies and
no memory management available

hrtl_initcall_mainsystem setup main-system structures

hrtl_initcall_subsystem setup sub-system structures

hrtl_initcall_service setup system services

hrtl_initcall_late everything else (HRTL core is fully running)

11.2. Management of Memory Objects

Some data objects in the HRTL extension share the same properties such as access
and identification from user space. They are combined to a complex data type
hrtl_entity. An instance of hrtl_entity is placed inside a larger data object
and provides the features discussed in this section. The main structure of the
hrtl_entity type is shown in Listing 11.3.
struct hrtl_entity { entity.h

char name[HRTL_NAME_LEN];

void *context;

/* -- assigned by the framework -- */

...

struct {

struct timeval create;

struct timeval modify;

} access;

unsigned int perms;

struct hrtl_user user;

...

struct hrtl_hashentry hashentry;

hrtl_id_t id;

unsigned int references;

...

};

Listing 11.3: hrtl_entity

149

Chapter 11. Description of the HRT Linux Implementation

The HRTL system stores time information about creation and modification of
hrtl_entity objects. Furthermore, permissions for modification and other oper-
ations are checked for the calling process. The concrete use of an hrtl_entity

object depends on the superior data structure.
hrtl_entity objects are summarized to groups. An object is not accessible if

it is not included in a group. An hrtl_entity_group object represents such a
group and provides several functions for manipulating the objects contained. They
are discussed in this section. The main management functions are:

hrtl_entity_group_get, hrtl_entity_group_put increases and decreases
a counter inside the hrtl_entity object (references). The counter indicates
if the object is being used by some kernel code at the moment.

hrtl_entity_attach_group adds an object to a group. The associated times-
tamps are adjusted. Adding an hrtl_entity object to a group sets the create
and modify time stamp to the current time. The current user is set as the owner
and the creator of the object.

hrtl_entity_detach_group removes an object from a group. This is only possi-
ble if the references counter is zero (the object is not in use). An hrtl_entity
object outside a group can not be accessed by the functions discussed in this section.

The functions for creating and deleting hrtl_entity_group objects are not
shown here. A group which contains objects can not be deleted. On the other hand,
objects can only be added to a group until a defined limit is reached.

11.2.1. Id and Key Pool

The objects of an entity group are stored in linked lists. In order to identify and
access the elements of a group, an identifier number (id) for each element can be
generated. Each id is unique within the scope of an entity group. The id repre-
sents an index in a static array of references to entity objects. Since the size of
the array is fixed the number of available ids is limited by the array size. The
function hrtl_entity_group_connect_id() creates an id for an object inside
a group. If no free entry in the id array can be found, the limit of available ids
is reached and the operation fails. An element of a group can be accessed by
hrtl_entity_group_get_by_id(). The function returns a reference of an entity
element if the id could be found in the id array of the group.

In addition to ids, an entity object can also be accessed by an user defined iden-
tification key. Ids are chosen by the HRTL system and are only unique within
one entity group. A key is given by the creator of an object and is connected to a
hrtl_entity_key_pool. The keys are stored in a hash table. The size of the table
and the range of valid keys can be defined. A key pool can handle keys from various
entity groups. The HRTL system defines two different hrtl_entity_key_pool
objects by default:

150

11.3. Subsystems

hrtl_keys_system for system service objects that need to be accessible from user
space (e.g. Section 11.3).

#define HRTL_SYSTEM_KEY_MIN 0xFFFF0000 defines.h

#define HRTL_SYSTEM_KEY_MAX 0xFFFFFFFE

Listing 11.4: System key range

hrtl_keys_resource for user defined objects like scheduling groups and profiles
(e.g. Section 11.6).

#define HRTL_RESOURCE_KEY_MIN 0x00000001 defines.h

#define HRTL_RESOURCE_KEY_MAX 0xFFFEFFFF

Listing 11.5: Resource key range

11.2.2. Entity System-Call Multiplexer

hrtl_entity objects can be accessed from user space via the entity system-call mul-
tiplexer. An entity group needs to implement an instance of hrtl_entity_syscall
in order to provide user space access to its elements. The hrtl_entity_syscall
object defines which operations are supported:

HRTL_ENTITY_SYSCALL_CONTROL allows to create and destroy objects.

HRTL_ENTITY_SYSCALL_CONFIG allows to change the ownership and the access
mode of an object.

HRTL_ENTITY_SYSCALL_INFO provides detailed information on every element.

HRTL_ENTITY_SYSCALL_SETTINGS allows to configure settings of an element.

Each of the above listed flags enables one or more functions that can be called from
the entity system-call. For instance, if the CONTROL flag is set, the functions alloc()
and free() are available. The SETTINGS flag enables the functions settings()
and details(). These four functions are accessible by pointers stored in the
hrtl_entity_syscall object.

The enumeration type hrtl_entity_domain defined in include/hrtl/syscall.h
needs to be extended for each hrtl_entity_syscall object. Details on HRTL
system-calls will be discussed in Section 11.9.1.

11.3. Subsystems

The partitioning and task scheduling in the HRTL system is based on Linux kernel
modifications and enhancements. The low level extensions are denoted as subsystems
and are introduced in this section.

151

Chapter 11. Description of the HRT Linux Implementation

11.3.1. Time Base and Clock Sources

On a CPU that is controlled by the HRTL system (Section 11.4) the current time can
be determined by the hrtl_time_base-functions. The CPU reservation mechanism
resets the clock of a CPU to zero. The current time gives the time that passed since
the CPU was reserved.

hrtl_time_base_now() gives the current time since the CPU was reserved in
hrtl_time_t.

hrtl_time_base_now_ns() gives the current time since the CPU was reserved
in nano seconds.

hrtl_time_base_get_diff() the distance between two reserved CPUs in nano
seconds.

A clock for a reserved CPU is represented by the implementation of an instance
of hrtl_clock_source (Listing 11.6). The setup() function is invoked during
the reservation process. now_ns() is called by hrtl_time_base_now_ns(). The
standard clock implementation of the HRTL system can be seen in arch/x86/hrtl/
clock-tsc.c.

struct hrtl_clock_source {clock_source.h

struct hrtl_version version;

unsigned long (*now_ns)(struct hrtl_clock_source *);

int (*setup)(struct hrtl_clock_source *);

int (*shutdown)(struct hrtl_clock_source *);

/* -- assigned by the framework -- */

struct hrtl_entity entity;

};

Listing 11.6: Clock source

11.3.2. Timer and Interrupts

Based on the time base and clock source subsystem a timer system can be built. A
timer device implements an instance of hrtl_timer_device (Listing 11.7). The
setup() function is called during the reservation process and performs a timer cali-
bration. The results of the calibration are stored in an hrtl_timer_device_cpu

object for each CPU.

struct hrtl_timer_device {timer_device.h

struct hrtl_version version;

void (*set)(struct hrtl_timer_device *, unsigned long delta);

int (*setup)(struct hrtl_timer_device *,

struct hrtl_timer_device_cpu *);

int (*shutdown)(struct hrtl_timer_device *);

152

11.3. Subsystems

/* -- assigned by the framework -- */

struct hrtl_entity entity;

void (*fires)(struct hrtl_timer_device *, unsigned long delta);

};

Listing 11.7: Timer device

The set() function is called by the timer subsystem to program the time for an
interruption. After that time has passed the timer device has to call the fires()
function.

The standard timer device in the HRTL system can be seen in timer-lapic.c in
the architecture specific source tree. The timer device uses the local APIC architecture
to program interrupts. During the setup process the Linux interrupt handler is replaced
by a new HRTL local APIC handler (Listing 11.8).

void __irq_entry hrtl_timer_lapic_handler(struct pt_regs *regs) { timer-lapic.c

...

add_preempt_count(NMI_OFFSET + HARDIRQ_OFFSET);

apic_write(APIC_EOI, APIC_EOI_ACK);

inc_irq_stat(apic_timer_irqs);

hrtl_lapic_timer.fires(&hrtl_lapic_timer, apic_read(APIC_TMICT));

...

sub_preempt_count(NMI_OFFSET + HARDIRQ_OFFSET);

set_irq_regs(old_regs);

}

Listing 11.8: HRTL local APIC interrupt handler

A timer in the HRTL system is represented by an instance of hrtl_timer. It has
to implement at least a callback function fires(). The callback is invoked when
the timer expires and returns a hrtl_time value if the timer should be programmed
again or HRTL_TIME_INVALID. The timer subsystem handles all timer objects in a
per CPU hrtl_timequeue sorted by their expiration time. The associated timer
device is programmed according the head of the timer queue. If a timer expires, the
specified callback function is called and the timer device is programmed for the next
timer in the queue.

The two functions hrtl_timer_start() and hrtl_timer_stop() give access
to the timer subsystem. They must be called on the same CPU that should execute
(or delete) the timer. The event subsystem (Section 11.3.3) is based on the timer
system and provides a more flexible way for programming timed events.

11.3.3. Events

An event (hrtl_event) defines a callback function and a trigger. This trigger can
either be a call to a special trigger-function, the expiration of a timer or another event
(event queue).

Event queue An event can be included in an object of the type hrtl_eventqueue.
The trigger of this event depends on the trigger of the event queue. The trigger of

153

Chapter 11. Description of the HRT Linux Implementation

an event queue can either be a call to a special trigger-function or a timer. If the
trigger for an event queue fires, the associated events are computed according to a
given priority (Listing 11.9).

enum hrtl_event_priority {event.h

__HRTL_EVENT_PRIORITY_FIRST = 0,

HRTL_EVENT_PRIORITY_HIGH = __HRTL_EVENT_PRIORITY_FIRST + 0,

HRTL_EVENT_PRIORITY_MID = __HRTL_EVENT_PRIORITY_FIRST + 1,

HRTL_EVENT_PRIORITY_LOW = __HRTL_EVENT_PRIORITY_FIRST + 2,

__HRTL_EVENT_PRIORITY_LAST = HRTL_EVENT_PRIORITY_LOW,

__HRTL_EVENT_PRIORITY_NUM = __HRTL_EVENT_PRIORITY_LAST + 1,

};

Listing 11.9: Priorities for events

Event queues are dynamic memory objects that can be created with hrtl_event-

queue_create(). Some situations in the HRTL system require merging and
dividing queues, which will automatically create or destroy event queues (i.e. Sec-
tion 11.6.1).

Trigger function The two functions hrtl_event_trigger() and hrtl_event-
queue_trigger() signal the occurrence of an event. These functions can only
be called for events that are not associated with a timer. If an event (respectively
an event queue) has enabled the entity system-call access (Section 11.2.2), the event
can be triggered from user space. This will be discussed in Section 11.9.1.

Timer An event (respectively an event queue) can use a timer as trigger source. In
this case, an event can be implemented as a periodic event. If the timer for an event
fires the timer subsystem will re-queue the timer according to a given time value
(the period).

Events provide a wait queue for tasks. A task can register to wait for the occurrence
of an event by a call to hrtl_event_wait(). The calling task must not hold any
locks, since it is going to be suspended. In order to prevent waiting on an event that
occurred between releasing a lock and the call to the wait function, a ticket for that
event must be used in combination with the wait function. The ticket is received
inside a protected section (lock) and is valid until the event occurs. If the ticket is not
valid while calling hrtl_event_wait(), the function just returns since the event
had already occurred.

11.4. CPU Reservation

A CPU that is controlled by the HRTL system is called a reserved CPU. It extends
the running HRTL partitioning core with an additional resource for task and group
scheduling (see Section 11.6). Normally, a task is interrupted regularly by hardware
interrupts and the core Linux system. The Linux scheduler can decide to resume or
start a different task on each CPU at any time. In order to realise the techniques as

154

11.4. CPU Reservation

described in Chapter 10, the Linux scheduler and other main system aspects must be
disabled or adjusted for reserved CPUs. The reservation process is discussed in this
section.

For each reserved CPU a timer device (Section 11.3.2) and a clock source (Sec-
tion 11.3.1) must be chosen. An instance of the type hrtl_profile specifies these
properties. One CPU profile can be taken for several reserved CPUs. It is bound to a
reserved CPU till the CPU is released.

11.4.1. Per CPU Idle Task

The idle task is scheduled on a reserved CPU if no real-time task can be executed.
Each CPU in the system has one defined idle task. For a non-reserved CPU, the idle
task is present but never scheduled. During CPU reservation and in the housekeeping
phase (Section 10.2.3), the idle task is used to perform some work that must be
executed on that specific CPU. Listing 11.10 shows the main loop of the task.

static int hrtl_idle_task_fn(void *data) idle_task.c

...

while (!kthread_should_stop()) {

preempt_disable();

local_irq_save(flags);

...

if (unlikely(idle_task->flags & HRTL_IDLE_TASK_SETUP)) {

...

hrtl_system_cpu_setup();

} else if (idle_task->flags & HRTL_IDLE_TASK_PERIOD) {

...

hrtl_housekeeping_run();

}

local_irq_restore(flags);

if (unlikely(idle_task->flags & HRTL_IDLE_TASK_IRQ)) {

...

hrtl_irq_run();

set_tsk_need_resched(current);

}

while (!need_resched())

cpu_relax();

...

preempt_enable_no_resched();

schedule();

}

...

}

Listing 11.10: Idle task main loop

An idle task is a member of the HRTL scheduling class (Section 11.5) and bound
to a certain CPU. Unlike other tasks in this scheduling class, the idle task does not

155

Chapter 11. Description of the HRT Linux Implementation

belong to any partition. The behavior of the idle task is managed by three different
flags (defined in hrtl/system/system.h):

HRTL_IDLE_TASK_PERIOD This flag is set in the idle phase of a scheduling group.
Depending on the housekeeping object1 different housekeeping tasks are scheduled.
Housekeeping tasks are arranged in event queues. The function hrtl_house-

keeping_run() triggers these queues according to the housekeeping object.

HRTL_IDLE_TASK_SETUP This flag is only set during the CPU reservation process.
It leads to a call to hrtl_system_cpu_setup() where the current CPU state
is changed (Section 11.4.2). Since an idle task is bound to a certain CPU, the setup
function is executed on that CPU.

HRTL_IDLE_TASK_IRQ This flag invokes the idle task to execute an interrupt han-
dler. Threaded interrupt handlers are discussed in Section 11.6.3.

The idle for a specific CPU is chosen for execution if no real-time task can be
scheduled. For instance, if the current static scheduling group has no active task
in the ready queue. When the current time slice in the scheduling plan is assigned
to a system group or a dynamic partition, the idle task is scheduled only if Linux
tasks are not activated (Section 11.5). The idle task will be scheduled if the related
CPU is set in the CPU mask hrtl_cpus_reserved and is not set in the mask
hrtl_cpus_linux.

11.4.2. CPU States

At any time, each CPU in the system is in one of the states as shown in Table 11.1.
The table describes an action that is performed in every state. The column CPU
indicates which CPU executes the action: system CPU (sys), CPU that is going to be
reserved/released (res). A state change means going to the next state (the next row).
The next state for HRTL_SYSTEM_CPU_FREED is HRTL_SYSTEM_CPU_UNUSED.

State actions are managed by event queues. Entering a state triggers the appropriate
queue and executes the included events. The events are executed with three different
priority levels (Section 11.3.3).

An instance of hrtl_cpu_setup_call defines a certain state action. As can be
seen in Listing 11.11 a callback function is defined together with a state and a priority
level. The macro hrtl_cpu_setup_initcall can be used to define a state action
during the system boot process.

enum hrtl_cpu_setup_prio {cpu.h

HRTL_CPU_SETUP_PRE = HRTL_EVENT_PRIORITY_HIGH,

HRTL_CPU_SETUP_POST = HRTL_EVENT_PRIORITY_LOW,

HRTL_CPU_SETUP_SYSTEM = HRTL_EVENT_PRIORITY_MID,

};

1The housekeeping objects are not explained here. See Section 10.2.3 for more details.

156

11.4. CPU Reservation

struct hrtl_cpu_setup_call {

enum hrtl_cpu_state state;

enum hrtl_cpu_setup_prio prio;

void (*call)(struct hrtl_cpu *);

/* -- assigned by the framework -- */

struct hrtl_event event;

};

#define hrtl_cpu_setup_initcall(_c) \

static int __init __hrtl_hrtl_cpu_setup_initcall_##_c (void) { \

hrtl_printk_trace_fkt_boot(); \

WARN_ON(0 > hrtl_cpu_setup_call_register(&(_c))); return 0; }; \

hrtl_initcall_late(__hrtl_hrtl_cpu_setup_initcall_##_c)

Listing 11.11: CPU setup calls

The system CPU hosts a special worker thread which can be triggered to execute
a specified work package on that CPU. The worker thread is bound to the system
CPU and not included in the HRTL scheduling class. Together with the per CPU
idle tasks the state actions described can be scheduled on different CPUs.

State CPU Action

HRTL_SYSTEM_CPU_UNUSED n/a non-reserved

HRTL_SYSTEM_CPU_PREPARATION sys clear CPU from system cpus

HRTL_SYSTEM_CPU_SETUP res setup devices (CPU profile)

HRTL_SYSTEM_CPU_COMPLETION sys prepare Linux subsystems

HRTL_SYSTEM_CPU_RESERVED res start into static scheduling plan

HRTL_SYSTEM_CPU_EVALUATING sys mark CPU as free

HRTL_SYSTEM_CPU_SHUTDOWN res stop running scheduling plan

HRTL_SYSTEM_CPU_CLOSING sys prepare Linux subsystems (release)

HRTL_SYSTEM_CPU_FREED res shutdown devices (CPU profile)

Table 11.1.: CPU states

11.4.3. CPU Takeover

The function hrtl_system_reserve() initiates the CPU reservation process (List-
ing 11.12). If no specific CPU is defined in parameter rcpu the next free CPU is taken
and removed from hrtl_cpus_free. hrtl_cpu_get_cpu() returns a reference
to the CPU’s status object (hrtl_cpu) which includes the current CPU state. Only
one CPU can be in the reservation process at a time. In order to exclude other CPUs
from entering the reservation process while another CPU is in this phase, the calling
CPU requests a ticket (token). The ticket can only be given to one CPU and must be

157

Chapter 11. Description of the HRT Linux Implementation

returned when the reservation process is completed (or has failed). Besides mutual
exclusion the ticket manages various status information during the reservation process.
hrtl_cpu_reserve_ticket_wait() blocks the calling task until the ticket is
available.

int hrtl_system_reserve(int rcpu, hrtl_key_t profile_key,system.c

hrtl_id_t core_id, hrtl_id_t sync_core_id)

{

...

cpu = hrtl_system_take_free_cpu(rcpu);

...

ccpu = hrtl_cpu_get_cpu(cpu);

hrtl_cpu_reserve_ticket_wait(ccpu);

retval = hrtl_profile_prepare_setup(cpu, profile_key);

...

retval = hrtl_core_prepare_setup(cpu, core_id, sync_core_id);

...

WARN_ON(hrtl_cpu_ticket_prepare_step(HRTL_SYSTEM_CPU_PREPARATION,

HRTL_SYSTEM_CPU));

hrtl_sys_worker_trigger();

if (0 == hrtl_cpu_wait_state(ccpu, HRTL_SYSTEM_CPU_RESERVED)) {

...

}

hrtl_cpu_release_ticket(ccpu);

...

}

Listing 11.12: CPU reservation

After the ticket is assigned, the given CPU profile and scheduling plan (core) are
prepared for the reservation process. This includes mainly a check of the permissions
of the calling task. In this step, the cycles of the scheduling plan are put together
(Section 11.6.1).
hrtl_cpu_ticket_prepare_step() defines the next state and the CPU that

should execute the related state action events. Since the preparation state is entered
from the system CPU, the worker thread needs to be activated. Details on the worker
thread are not discussed here. The calling task is blocked until the CPU is reserved
or the reservation process has failed. Finally, the ticket which was previously acquired
is released.

The worker thread realises that the preparation state is defined for a CPU and calls
hrtl_system_cpu_state(). This function is invoked for every state change from
different tasks running on their specified CPU. The implementation of hrtl_system-
_cpu_state() triggers the according event queues for a prepared state. After
executing some state related actions the next state is prepared. As can be seen in
Listing 11.13 no next state is prepared for the reserved state.

static void hrtl_system_cpu_state(struct hrtl_cpu *ccpu,system.c

enum hrtl_cpu_state state)

158

11.4. CPU Reservation

{

...

WARN_ON(hrtl_cpu_ticket_achieved_step(state));

switch (state) {

case HRTL_SYSTEM_CPU_PREPARATION:

hrtl_warn_on(hrtl_cpu_reserved(cpu));

hrtl_cpu_ticket_prepare_step(state +1, cpu);

cpumask_set_cpu(cpu, hrtl_cpus_reserved);

break;

case HRTL_SYSTEM_CPU_SETUP:

hrtl_migrate_linux_tasks();

hrtl_cpu_ticket_prepare_step(state+1, HRTL_SYSTEM_CPU);

hrtl_sys_worker_trigger();

break;

case HRTL_SYSTEM_CPU_COMPLETION:

hrtl_cpu_ticket_prepare_step(state +1, cpu);

idle_task = hrtl_cpu_get_idle_task(cpu);

hrtl_idle_task_set_setup(idle_task);

set_tsk_need_resched(hrtl_idle_task_get_task(idle_task));

break;
...

case HRTL_SYSTEM_CPU_UNUSED:

case HRTL_SYSTEM_CPU_RESERVED:

break;
...

}

}

Listing 11.13: CPU state machine

In the preparation step the CPU is activated in the hrtl_cpus_reserved mask.
The periodic Linux timer interrupt checks if the current CPU is enabled in this mask.
On a reserved CPU the timer interrupt calls the function hrtl_system_takeover()
and disables itself (see Section 11.4.4 for details). The takeover function disables the
CPU from the hrtl_cpus_linux mask and sets the HRTL_IDLE_TASK_SETUP
flag for the idle task.

11.4.4. Necessary Adjustments

The Linux timer interrupt must be extended for the CPU reservation process in
order to call the hrtl_system_takeover() function. Furthermore, the periodic
Linux timer should be disabled so that the real-time scheduling runs without further
interruptions on a reserved CPU. Listing 11.14 shows the necessary adjustments for
the Linux time tick system.

static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) tick-sched.c

{

...

#if defined(CONFIG_NO_HZ) || defined(CONFIG_HRTL)

159

Chapter 11. Description of the HRT Linux Implementation

if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))

tick_do_timer_cpu = cpu;

#endif
...

#ifdef CONFIG_HRTL

if (unlikely(hrtl_system_takeover())) {

if (tick_do_timer_cpu == cpu)

tick_do_timer_cpu = TICK_DO_TIMER_NONE;

return HRTIMER_NORESTART;

}

#endif
hrtimer_forward(timer, now, tick_period);

return HRTIMER_RESTART;

}

Listing 11.14: Linux periodic interrupt

The Linux event handler for periodic ticks is based on high resolution timers. In
order to stop the periodic timer for a CPU the callback function just has to return
HRTIMER_NORESTART. hrtl_system_takeover() returns a value other than
zero in case the calling CPU is set in the hrtl_cpus_reserved mask. If the timer
interrupt for the calling CPU should be disabled and the CPU is responsible for jiffies
updates, the tick_do_timer_cpu variable is released and will be taken by any
other non-reserved CPU in the system.

As described in Section 10.2.1 APIC inter processor interrupts (IPI) must be
intercepted and handled in a special way. An IPI call to a reserved CPU is taken to a
queue and handled during one of the housekeeping phases on that CPU. Listing 11.15
shows the necessary adjustment for the Linux IPI call API.

static inline void arch_send_call_function_single_ipi(int cpu)smp.h

{

#ifdef CONFIG_HRTL

if (hrtl_cpu_reserved(cpu))

hrtl_cpu_call_function_single_ipi(cpu);

else
#endif

smp_ops.send_call_func_single_ipi(cpu);
}

static inline void arch_send_call_function_ipi_mask(const struct cpumask

*mask)

{

#ifdef CONFIG_HRTL

int cpu;

cpumask_t linux_mask;

cpumask_clear(&linux_mask);

for_each_cpu(cpu, mask)

if (hrtl_cpu_reserved(cpu))

hrtl_cpu_call_function_ipi(cpu);

160

11.4. CPU Reservation

else
cpumask_set_cpu(cpu, &linux_mask);

if (!cpumask_empty(&linux_mask))

smp_ops.send_call_func_ipi(&linux_mask);

#else
smp_ops.send_call_func_ipi(mask);

#endif
}

Listing 11.15: Linux IPI API

Since the Linux periodic timer interrupt is disabled on reserved CPUs, the Linuc
timer subsystem (including HR-timer) and the RCU mechanism need to be extended.
Timers and RCU are normally processed by the interrupt handler of the periodic tick.
If the Linux handler is completely disabled, timers will not work any more.

Linux timers

static struct hrtl_cpu_setup_call hrtl_timer_pull_call = { timer.c

.state = HRTL_SYSTEM_CPU_COMPLETION,

.prio = HRTL_CPU_SETUP_PRE,

.call = hrtl_timer_pull, };

static struct hrtl_cpu_setup_call hrtl_hrtimer_pull_call = { hrtimer.c

.state = HRTL_SYSTEM_CPU_COMPLETION,

.prio = HRTL_CPU_SETUP_PRE,

.call = hrtl_hrtimer_pull, };

Listing 11.16: Linux timer setup

Timers which have already been activated, running on a reserved CPU, must be
moved away when the Linux timer interrupt is deactivated. The two setup callbacks
shown in Listing 11.16 are responsible for timer migration. The implementation is
not shown here. Pending timers are just removed from the timer queue and append
to the queue hosted by the system CPU. This requires some additional locking
variables, since a queue may be altered from different CPUs simultaneously.

New timers must be activated on a different CPU if the Linux timer interrupt is
deactivated. When a new timer should be started on a reserved CPU, the timer
base is changed to the timer base of the system CPU.

Read-copy update

static struct hrtl_cpu_setup_call hrtl_move_rcu_callbacks_call = { rcutree.c

.state = HRTL_SYSTEM_CPU_COMPLETION,

.prio = HRTL_CPU_SETUP_PRE,

.call = hrtl_move_rcu_callbacks, };

Listing 11.17: Linux RCU setup

The per CPU queue of pending finished RCU operations must be moved away when
a CPU becomes reserved. New RCU callbacks must be enqueued on a non-reserved

161

Chapter 11. Description of the HRT Linux Implementation

CPU (system CPU). The setup callback shown in Listing 11.17 manages RCU
migration. The implementation uses the Linux CPU hotplug mechanism.

Since the Linux timer interrupt is disabled the function rcu_check_quiescent-

_state() is never called and it is not detected that the CPU is in a quiescent state.
Instead, hrtl_quiescent_state() signals that a reserved CPU has passed such
a state. It is actually a wrapper function for rcu_check_quiescent_state()
and is invoked during the housekeeping phase.

Pending tasklets and work packages for a reserved CPU must be moved to another
CPU (actually the system CPU). Tasklets are implemented via two SoftIRQs. Since
SoftIRQs are also directed to an unreserved CPU, new tasklets must be enqueued
on that CPU. SoftIRQs and workqueues are processed by a special kernel thread
which is not scheduled on a reserved CPU. The Linux SoftIRQ, tasklet and workqueue
mechanism need to be modified in several places. The implementation is always similar
to the already introduced timer and RCU modifications. New work packages for a
reserved CPU are redirected to the system CPU. Pending work is migrated when a
CPU becomes reserved. In all cases additional locking mechanisms are needed, which
brings high variety of code changes. The migration of pending packages is introduced
via hrtl_cpu_setup_call objects to the CPU reservation process. The migration
implementations are mainly based on the Linux CPU hotplug mechanism, which
already enables Linux to migrate pending packages between CPUs.

A reserved CPU has to be excluded from the load balancing of the Linux scheduler.
On the one hand, a reserved CPU must not pull processes from other run-queues,
even if these are much longer than its own run-queue. On the other hand, real-time
tasks must not be pulled from the run-queue of a reserved CPU to another CPU.
load_balance() and the find_idlest_cpu()/find_busiest_cpu() func-
tions need to be prepared to ignore CPUs which are not included in the hrtl_cpus_linux
mask. Linux tasks are moved from a reserved CPU by the HRTL system during the
housekeeping phase.

When waking up sleeping tasks, care must be taken to put them on the right CPU.
select_task_rq() is called from the wake-up mechanism to determine a CPU for
a task. Non-real-time tasks are never woken up on reserved CPUs (respectively if the
CPU is not included in the hrtl_cpus_linux mask).

static inlinecore.c

int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)

{

int cpu = p->sched_class->select_task_rq(p, sd_flags,wake_flags);

...

if (unlikely(p->policy != SCHED_HRTL)) {

hrtl_warn_on(!irqs_disabled());

read_lock(hrtl_cpus_linux_lock);

cpumask_and(&allowed,tsk_cpus_allowed(p),hrtl_cpus_linux);

read_unlock(hrtl_cpus_linux_lock);

if (unlikely(cpumask_empty(&allowed)))

162

11.5. Scheduling Class (SCHED_HRTL)

cpumask_copy(&allowed,cpumask_of(HRTL_SYSTEM_CPU));

} else
cpumask_copy(&allowed, tsk_cpus_allowed(p));

...

}

Listing 11.18: Select task run-queue

11.5. Scheduling Class (SCHED_HRTL)

A new scheduling class is introduced by the HRTL extension. Each real-time task in the
system is a member of that scheduling class. A task can switch to the SCHED_HRTL
policy by calling the sched_setscheduler() system call. The function is extended
by the patch and supports the new scheduling class.
SCHED_HRTL has the highest priority assigned among all scheduling classes ex-

cept the stop-task class.2 The macro for_each_class() iterates over all classes.
Scheduling classes are linked in a list where each class points to the next lower priority
class.

const struct sched_class stop_sched_class = { stop_task.c

#ifdef CONFIG_HRTL

.next = &hrtl_sched_class,

#else
.next = &rt_sched_class,

#endif
...

};

const struct sched_class hrtl_sched_class = { hrtl.c

.next = &rt_sched_class,

...

};

Listing 11.19: Scheduling classes list

A detailed description of the Linux scheduler can be found in [?] and [?].

11.5.1. Linux Scheduler Integration

The main scheduler function __schedule() picks up the highest priority task from
a scheduling class and switches to the memory segment and thread’s register state of
the new task. The classes are processed according to their priorities. If a class has
no runnable task, the next class in the list is considered. A scheduling class has to
implement a pick_next_task() function.

static struct task_struct * hrtl.c

pick_next_task_hrtl(struct rq *rq)

{

2The stop task is the highest priority task in the system, it preempts everything and will be
preempted by nothing.

163

Chapter 11. Description of the HRT Linux Implementation

int cpu = smp_processor_id();

struct task_struct *next;

/* first, check if an interrupt is pending */

if (unlikely(NULL != (next = hrtl_curr_interrupt_task())))

return next;

/* then, try to get an HRTL task */

if (likely(NULL != (next = hrtl_curr_get_next_task())))

return next;

/* return the idle task if Linux is not welcome */

if (likely(!hrtl_cpu_dyn(cpu)))

return hrtl_idle_task_get_task(hrtl_curr_get_idle_task());

/* get a dynamic group task */

if (likely(NULL!=(next = hrtl_budget_sched_pick_next_task(rq)))){

hrtl_budget_run_hrtl(hrtl_task_budget_index(next));

hrtl_cpu_clear_linux(cpu);

return next;

}

/* finally, Linux can schedule a task */

hrtl_budget_run_linux();

hrtl_cpu_set_linux(cpu);

return NULL;

}

Listing 11.20: Pick next task from SCHED_HRTL

Listing 11.21 shows the pick_next_task() function of the HRTL schedul-
ing class. Calling this function on a non-reserved CPU will return NULL (which
will cause the main scheduler function to switch to the next scheduling class).
hrtl_curr_get_next_task() is a link to the currently running time-slot of
the static scheduling plan which will be discussed in Section 11.6. On a non-reserved
CPU or a CPU currently running a system group the function always returns NULL.

The concrete implementation of the pick_next_task() function and other
functions of the scheduling class depend on the current HRTL scheduling module
(Section 11.6.4) respectively the dynamic group scheduler (Section 11.7.3).

11.5.2. Adding Tasks to SCHED_HRTL

Static partitions are assigned to a certain CPU. If a task is added to a group, it must
be ensured that this task is located on the same CPU. Since running tasks can not
migrate to another CPU, it must be suspended and woken up on the right CPU.
The HRTL scheduling class member function switched_to_hrtl() is called from
sched_setscheduler() after a task was connected with a static partition. If the
current task’s CPU and the partition’s CPU are different, the task is added to a
pull queue inside the partition and the task’s resched flag is set. The resched
flag will cause the main scheduler function to choose another task for execution

164

11.5. Scheduling Class (SCHED_HRTL)

on the original task CPU. The resulting call of the HRTL scheduling class member
function put_prev_task_hrtl() will signal the partition’s CPU that a task switch
is needed (in case the partition is running and the currently running task has a lower
priority level). The actual task CPU migration is done by pre_schedule_hrtl()

which gets called by the main scheduler function on the partition’s CPU. A comparable
technique will be discussed in Section 11.7.2 for the dynamic partitions balancing
algorithm.

The HRTL scheduling class member function task_fork_hrtl() is called by
the Linux task creation mechanism if a task included in the HRTL policy calls the
fork() system call. The function chooses a partition where the new task should be
placed in. A partition for a newly created task can be defined at three different places.
The calling task itself can decide where the new task should be spawned. If the task
does not define a partition, the group of the calling task and then the group’s CPU
profile are considered. If none of these places define a valid partition where the new
task can be placed in, the new task is added to the SCHED_NORMAL Linux class.

11.5.3. Necessary Adjustments

The main scheduler function (especially the sub routine pick_next_task()) needs
to be modified in order to integrate the HRTL scheduling class. pick_next_task()
implements an optimisation in the case that all running tasks are connected with the
fair scheduling class. This optimisation is disabled in a HRTL patched kernel.

static inline struct task_struct * core.c

pick_next_task(struct rq *rq)

{

...

#ifndef CONFIG_HRTL

...

if (likely(rq->nr_running == rq->cfs.h_nr_running)) {

p = fair_sched_class.pick_next_task(rq);

if (likely(p))

return p;

}

#endif
for_each_class(class) {

p = class->pick_next_task(rq);

if (p)

return p;

}

...

}

Listing 11.21: Pick next task

The system call sched_setscheduler() is modified in order to handle the new
HRTL scheduling class. SCHED_HRTL is now a valid class and can be assigned to a
task in combination with a scheduling group. The group must be able to incorporate
the task or the function will return with an error. sched_setscheduler() expects

165

Chapter 11. Description of the HRT Linux Implementation

an object of sched_param in order to set the tasks priority level.3 The HRTL patch
adds an additional field to that structure in order to specify a partition.

11.6. Static Scheduling Plan

A static scheduling plan consists of on hrtl_core object and one or more hrtl_group
objects. Partitions are represented by (static) groups and include an execution and
an idle part (Section 10.3.1). During the CPU reservation process, a scheduling plan
is chosen and exclusively connected to that CPU. Partitions can be added to a plan
offline (before it is connected to a CPU) and at runtime.

11.6.1. Cycles

A time slot is represented by an instance of hrtl_cycle. It has a start and a stop
event and a defined runtime. Three callback functions need to be implemented for
each cycle object:

start(), stop() are called when the relevant time-slot begins and respectively
ends.

handler() is called with different actions (hrtl_cycle_handler_action) dur-
ing the setup phase (reserve CPU) and the shutdown phase (release CPU).

A cycle can contain other cycles. The function hrtl_cycle_hook() inserts a
cycle (and all included cycles) into a root cycle at a given time offset. Two event
queues are created for each of the two cycles, one for each start and stop event. Stop
events have a higher priority than start events in a event queue.

#define HRTL_CYCLE_START_EVENT HRTL_EVENT_PRIORITY_MIDcycle.c

#define HRTL_CYCLE_STOP_EVENT HRTL_EVENT_PRIORITY_HIGH

static int __hrtl_cycle_setup_queue(struct hrtl_cycle *cycle,

struct hrtl_eventqueue *queue,

enum hrtl_event_priority prio)

{

...

if (HRTL_CYCLE_START_EVENT == prio)

event = &cycle->event_start;

...

return hrtl_event_attach_queue(event, queue, prio);

}

static int hrtl_cycle_ensure_queues(struct hrtl_cycle *cycle)

{

...

if (NULL == hrtl_event_get_queue(&cycle->event_start)) {

3This priority level is only valid for Linux tasks. Real-time tasks atributes are adjusted with special
functions and are discussed in Section 11.9.1.

166

11.6. Static Scheduling Plan

queue = __hrtl_cycle_alloc_queue(HRTL_CYCLE_START_EVENT);

if (IS_ERR(queue))

return PTR_ERR(queue);

retval = __hrtl_cycle_setup_queue(cycle, queue,

HRTL_CYCLE_START_EVENT);

...

}

if (NULL == hrtl_event_get_queue(&cycle->event_stop)) {

...

}

Listing 11.22: Create queues for cycle events

Each event queue will be triggered by a timer. Two event queues that are triggered
at the same time are joined together. Since stop events have higher priorities than
start events, stop events are executed before start events if a queue is triggered by a
timer. A root cycle that does not contain any sub cycles has only one event queue
with one timer at runtime. A root cycle that contains two sub cycles, for instance an
execution and an idle time-slot of a partition, has two event queues at runtime.
hrtl_cycle_start() starts a defined root cycle with all included sub cycles.

During the startup process all timers for the included event queues are programmed.
Each timer for any event queue is defined as a periodic timer. The period time is the
runtime of the root cycle. After a cycle has started it can not be added as a sub cycle
to another cycle. A cycle which has started can still incorporate other cycles.

The function hrtl_cycle_setup() is called for each cycle that is included in the
root cycle during the startup process. The runtime of the root cycle and other time val-
ues are calculated and stored for every cycle. Thus, determining the current period time
is easy. hrtl_cycle_get_period() (which calls __hrtl_cycle_get_period())
translates a given time to the period time format (hrtl_period_t) as described in
Section 11.1.
static hrtl_period_t __hrtl_cycle_get_period(struct hrtl_cycle *cycle, cycle.c

hrtl_time_t time)

{

...

time -= cycle->calc.started;

ret.runtime = cycle->runtime;

ret.val.time = time % cycle->calc.runtime;

ret.val.count = time / cycle->calc.runtime;

...

return ret;

}

static int hrtl_cycle_setup(struct hrtl_cycle *root)

{

...

if (root->flags & HRTL_CYCLE_INCLUDED) {

parent = root->included.cycle;

167

Chapter 11. Description of the HRT Linux Implementation

if (HRTL_TIME_INVALID == root->calc.started) {

root->calc.started = parent->calc.started;

root->calc.started += root->included.offset;

}

root->calc.offset = parent->calc.offset;

root->calc.offset += root->included.offset;

root->calc.runtime = parent->calc.runtime;

root->cpu = parent->cpu;

} else {

hrtl_warn_on(HRTL_TIME_INVALID == root->calc.started);

root->calc.runtime = root->runtime;

root->calc.offset = 0;

}

...

}

Listing 11.23: Get current period time of running cycle

11.6.2. Partition Management

Time-slots of static partitions are represented as cycles. Each partition has one root
cycle including one cycle for the execution time-slot and one for the idle time-slot
(the idle time-slot is optional). A core object has the same time-slot structure. The
execution time-slot of a core objects includes the cycles of the associated partitions.

The beginning of a time-slot of a partition is signaled by hrtl_group_start().
The function is associated with the partition’s root cycle as the start callback.
hrtl_group_start() registers the partition at the HRTL scheduler (hrtl_curr-
_get_next_task(), Section 11.5.1) and sets the resched flag for the currently
running thread. hrtl_group_start() is called in interrupt context (timer in-
terrupt). Thus, the resched flag will invoke the main scheduler immediately when
returning from interrupt. Since the partition has changed on that CPU, the next task
will be picked from the new (active) partition.

At any time in the scheduling plan for a reserved CPU, exactly one partition is
activated. The space between time-slots of partitions in a core execution cycle is
filled by system groups. Two directly adjacent system groups will be combined to
one system group. Depending on the HRTL setup the running CPU is added to
the hrtl_cpus_linux mask when a system group starts. In the idle phase, active
Linux tasks are migrated away from the running CPU to the system CPU.

11.6.3. Interrupt Handlers

The per CPU idle thread is used to execute interrupts in task context. An interrupt is
split into a hardware handler (hrtl_hw_irq) and a threaded handler (hrtl_irq).
An hrtl_irq object can be connected with a partition or a reserved CPU (core).
If the handler is assigned to a partition, it will only be executed inside the allotted
time-slot. If no hardware handler is defined for an interrupt, the standard HRTL

168

11.6. Static Scheduling Plan

handler is used to enqueue the threaded handler at the defined position (core or
partition). The occurrence of an interrupt will preempt the running task (if the
defined time-slot is active) and execute the idle thread.

11.6.4. Interface for Scheduler Modules

The task scheduling for a static partition is realised by scheduler modules. The modules
can be implemented as Linux loadable modules and can be registered and deregistered
at system runtime. The HRTL system includes four example implementations of
scheduler modules:

HRTL_SCHED_SINGLE An easy scheduling class that deals with only one running
task or none. As soon as a task is added to this class the group closed flag is set.
This means that no more tasks can by added by the system. The flag is deleted by
removing the previously added task.

HRTL_SCHED_RM Rate-monotonic scheduling. This class requires each task to define
a computation time and a deadline. According to the descriptions in Section 3.2.2.2
and Section 10.4.3 the task with the shortest deadline is selected for execution.

HRTL_SCHED_POSIX FIFO and round-robin scheduling. Provides priority based
scheduling with additional timeslices. This scheduling variants were discussed in
Section 3.2.3 and Section 10.4.3.

HRTL_SCHED_SYSTEM This class can not be selected for user defined partitions. It is
assigned to every system group. Interactions with dynamic partitions are discussed
in Section 11.7.3.

The API for scheduler modules defines several callback functions that must be
implemented by a module. They are part of the hrtl_sched structure witch also
includes an hrtl_entity reference. Once registered, a scheduler module can be
selected for a static partition.

int assign() The scheduler module is assigned to a partition. Necessary memory
segments can be allocated and initialised in this function. A return value other
than zero signals that the module can not be connected to the given partition. No
tasks are included in the partition when this function is called.

release() The scheduler module is disconnected from a partition. At this time,
the partition is not running and does not include any tasks. Previously allocated
memory segments can be released by this function.

int add() A thread should be added to a partition. The partition may not be
assigned to a core object. A return value other than zero signals that the thread
can not be added to the partition.

169

Chapter 11. Description of the HRT Linux Implementation

del() A thread is removed from a partition. The partition may not be assigned to
a core object.

periodic() This function is called in several situations at defined times. It receives
a parameter expected (hrtl_period_t) witch stores the time value when the
event was planed.4 The following events are defined:

HRTL_SCHED_PERIODIC_SETUP, HRTL_SCHED_PERIODIC_SHUTDOWN The par-
titon starts or stops running, respectively the according core is assigned to (re-
moved from) a reserved CPU or the partition is added to a scheduling plan that
is already running.

HRTL_SCHED_PERIODIC_START, HRTL_SCHED_PERIODIC_END This events sig-
nals start and stop of the time-slot that is connected with the partition.

HRTL_SCHED_PERIODIC_TICK A defined timer that was programmed by the
scheduler module. A timer can be adjusted by hrtl_group_set_periodic(),
hrtl_group_forward_periodic() and hrtl_group_clear_periodic().

Apart from the setup and shutdown events, periodic() is always called in
interrupt context.

check_preempt() This function checks if a task that entered the runnable state
should preempt the task which is currently running.

get_next_task() This function chooses the most appropriate task eligible to run
next. If the function returns NULL either the idle task or a normal Linux task will
be scheduled (depending on the hrtl_cpus_linux mask).

yield() The running task performed a yield() system call. The HRTL system
provides the HRTL_TASK_YIELD_CYCLE flag that indicates that a task should be
suspended until the next period (time-slot) starts.

enqueue() Called when a task enters a runnable state.

dequeue() When a task is no longer runnable, this function is called.

prio_changed(), runtime_changed(), period_changed(), flags_changed()
Task attributes have changed.

The Linux task structure is extended by some variables in order to allow management
of assigned tasks in a partition. Thus, no extra memory blocks need to be allocated if
a task should be placed in a queue by a module.

struct sched_hrtl_entity {sched.h

...

struct hrtl_group *group;

...

unsigned int prio;

4The current time is available by hrtl_curr_get_period().

170

11.6. Static Scheduling Plan

hrtl_time_t runtime;

unsigned int period;

...

unsigned int flags;

...

/* HRTL schedule class related data */

struct {

unsigned int flags;

hrtl_time_t slice;

hrtl_period_t started;

hrtl_period_t timer;

struct list_head list;

struct hrtl_timequeue_node node;

} class;

};

struct task_struct {

...

#ifdef CONFIG_HRTL

struct sched_hrtl_entity hrtl;

#endif
...

};

Listing 11.24: HRTL task structure

The HRTL_TASK_DEADLINE flag can be defined for a thread to indicate that the
thread is running in periodic mode. The period is defined by the runtime value in the
hrtl_sched_param structure. A deadline is met by executing a yield() system
call within the specified time. The task is suspended until the next period (runtime
value) starts. A sleep does not signal that the task has met its deadline. A sleeping
task can miss its deadline.

The scheduler module can make use of the functions hrtl_task_deadline_-
define() and hrtl_task_deadline_undefine() to signal that a deadline for
a task was defined or undefined. The functions hrtl_task_met_deadline() and
hrtl_task_missed_deadline() signal that a deadline was met or missed. In
case a deadline is missed the corresponding task will receive a POSIX signal (defined
by HRTL_SIGDEADLINE) if the HRTL_TASK_SIGNALS flag is set for the task.

11.6.5. Deadline Events

Deadline events are collected for all tasks running in periodic mode. These events are
available for user space applications (deadline watchdog). A deadline watchdog must
be registered at a profile in order to receive deadline events. Listing 11.25 the events
that are available.

enum hrtl_deadline_info_event { types.h

HRTL_DEADLINE_DEFINE,

HRTL_DEADLINE_UNDEFINE,

HRTL_DEADLINE_MISSED,

HRTL_DEADLINE_MET,

171

Chapter 11. Description of the HRT Linux Implementation

};

struct hrtl_deadline_info {

enum hrtl_deadline_info_event event;

pid_t pid;

hrtl_time_t runtime;

hrtl_time_t now;

};

Listing 11.25: HRTL task structure

Two variables containing time information are included in a deadline info block.
They indicate when a deadline was defined (runtime) and when a task signaled that
a deadline was met (now).

Deadline events are stored in lockless ring buffers. Each CPU defines its own
deadline event ring buffer, thus only one writer exists for each buffer. No locking
mechanism is needed when an event is put into a buffer, since the commit can not be
interrupted by another CPU.

A deadline watchdog needs to request new deadline events. Delivering a POSIX
signal is not possible, because the sending task (respectively interrupt handler) may
block on a spin-lock while the signal is enqueued.

11.7. Balancing Dynamic Partitions

According to the description in Section 10.4.4 dynamic partitions are scheduled in
the time-slots provided by system groups. The HRTL system allows the definition
of seven (HRTL_BUDGET_MAX_GROUP) dynamic partitions plus one for the Linux
system. Runtime information of partitions are managed in an array, thus the max-
imum number of partitions must be a constant.5 The update rate and length of
the time window can be configured with the HRTL_BUDGET_WINDOW_SIZE and
HRTL_BUDGET_WINDOW_UPDATE constants.

11.7.1. CPU Usage Measurement

The HRTL dynamic partition scheduler maintains two different time windows. One
for reserved CPUs and one for unreserved CPUs. Each dynamic partition has a
guaranteed minimum percentages of available CPU time allotted for reserved CPUs
and a maximum share of time on unreserved CPUs (see also Section 10.3.1). A time
window is represented by an object of budget_window.

#define __HRTL_BUDGET_MAX_GROUP (HRTL_BUDGET_MAX_GROUP * 8)budget.h

#define __HRTL_BUDGET_GROUP_LONG BITS_TO_LONGS(__HRTL_BUDGET_MAX_GROUP)

struct budget_window_element {

unsigned int slices;

unsigned int groups[__HRTL_BUDGET_MAX_GROUP];

};

5Dynamic memory allocation for partitons would require some locking mechanisms.

172

11.7. Balancing Dynamic Partitions

struct budget_current_frame {

cpumask_t budget_cpus;

unsigned long budget_groups[NR_CPUS][__HRTL_BUDGET_GROUP_LONG];

};

struct budget_window {

void (*update)(struct budget_window *window,

struct hrtl_budget *budget,

unsigned int new, unsigned int old);

void (*frame_init)(struct budget_window *window,

struct budget_current_frame *frame);

raw_spinlock_t lock;

struct budget_current_frame frame;

unsigned int pos;

unsigned int slices;

struct budget_window_element window[HRTL_BUDGET_WINDOW_SIZE];

};

Listing 11.26: Time window

The actual part of a window that moves forward as time advances is frame

(budget_current_frame). A window update (moving the frame) is performed by
a (Linux) timer running on the system CPU every HRTL_BUDGET_WINDOW_UPDATE

microseconds (default is 5000). A frame defines a bit mask for CPUs being avail-
able for scheduling between two window updates and a bit mask for the parti-
tions that were running in that time. A time window stores frames for the last
HRTL_BUDGET_WINDOW_SIZE window updates (default is 806). On a window up-
date, the usage for this frame is added to the usage for previous HRTL_BUDGET_-
WINDOW_SIZE -1 frames to compute the total CPU usage over the time window.
Furthermore, a new slot in the window array is allocated for the next frame. The
outdated window slot is subtracted from the total CPU usage. The new frame inherits
the bit mask of available CPUs from the previous frame. The currently running
partition on each available CPU is marked as running in the bit mask for active
partitions.

Each CPU that is available for scheduling during a frame extends the number of
slices by one. A slice is distributed in equal parts to the partitions running on that
CPU. The number of used slices for a partition is stored in the partitions data object.
The total CPU usage for a partition in a time window is given by the percentage of
used slices of this partition and the number of available slices during the time window.

11.7.2. Group Distribution

The HRTL dynamic partition scheduler maintains two different queues for available
time slices (for reserved and non-reserved CPUs). Time slices are queued according to
the priority of the currently running task in that slice. The slice running the task with

6The default window length is 400 milliseconds: 5000μs · 80.

173

Chapter 11. Description of the HRT Linux Implementation

the lowest priority is enqueued at the head of the queue. If the task’s CPU budget is
depleted the priority is lowered so that tasks from partitions with valid CPU budget
are always enqueued after partitions that have overused their CPU budgets. If a task
becomes ready for execution, it is easy to find a time slot for that task (or none). The
new task can run if the combination of task priority and partition budget is higher
than the one of the task at the head of the queue. In this case, the queue’s head is
removed from the queue and prepared for a task switch.7 The previously removed
slice is enqueued again with the new task’s properties after the switch took place.

Each CPU in the system provides one time slice at a time or none if the CPU is
running a static partition. The slice is either enqueued in the reserved queue or the
non-reserved queue. Above, it was explained how a slice can be found for a known
task. In three different situations, a suitable task needs to be found for a slice:

1. A time slice changes the queue.
(reserved ↔ non-reserved)

2. The partition of the task running in a time slice changes the budget state.
(available ↔ overused)

3. The task running in a time slice is dequeued.
(suspend, terminate, . . .)

Dynamic partitions are organised in four queues. Like the queues for available
time slices, partitions are enqueued for reserved and non-reserved CPUs. However, a
partition can be present in both categories at the same time, since dynamic partitions
have different budget values for both kinds of CPUs. Partitions that have overused
their CPU budget are separated from those who have not. Partitions are enqueued
according to the task with the highest priority level that is not already running. A
task for a free time slice is always found in the head of the queue of partitions that
still have a valid CPU budget.

Each dynamic partition maintains a priority based array for the related tasks. Tasks
of the same priority are stored in a queue. A task is in that array if it is ready to run
but not already scheduled in any time slice. A task that is added to or removed from
the array changes the partition ordering.

11.7.3. SCHED_HRTL Integration

A time slice is removed from the non-reserved queue by a callback function that is
registered in the HRTL CPU reservation process (Section 11.4.2). The slice is enqueued
in the reserved queue when a system group starts execution. The periodic()

callback function of the HRTL_SCHED_SYSTEM scheduler module informs the budget
accounting core about the new space.

The pick_next_task() function from the HRTL scheduling class is always
called on every task switch on every CPU (Listing 11.21). The two functions

7A task switch is realised by various callbacks from the Linux scheduler core.

174

11.8. System-Call Handler Threads

hrtl_budget_run_hrtl() and hrtl_budget_run_linux() signal that the
calling CPU is currently running either a real-time task or a normal Linux task.

static void hrtl_budget_run_group(int idx, int cpu) account.c

{

...

if (hrtl_cpu_reserved(cpu))

window = &hrtl_window;

else
window = &linux_window;

...

per_cpu(budget_group_last, cpu) = idx;

__set_bit(idx, window->frame.budget_groups[cpu]);

...

}

void hrtl_budget_run_linux(void)
{

...

hrtl_budget_run_group(linux_budget_idx, smp_processor_id());

}

void hrtl_budget_run_hrtl(int idx)

{

hrtl_budget_run_group(idx, smp_processor_id());

}

Listing 11.27: Register partition as active in frame

The periodic timer that is provided by the HRTL system for scheduler modules is
used to realize time slices for real-time tasks within a partition as well as for Linux tasks
running on reserved CPUs. The timer calls the hrtl_linux_tick_emulation()
function which behaves like the original Linux timer callback. If the time slice of a
real-time task running in a dynamic partition is exceeded the task will be put to the
tail of the queue in the related priority array.

11.8. System-Call Handler Threads

The HRTL system allows partitions to execute system-calls in system-call handler
threads (Section 10.4.2). Whenever a thread invokes a system-call a work package is
sent to the associated handler. One handler can be connected to multiple partitions.
The handler thread main loop is shown in Listing 11.28.

static int hrtl_handler_thread_fn(void *data) thread.c

{

...

preempt_disable();

...

for (;;) {

...

handler->state = HRTL_HANDLER_RUNNING;

175

Chapter 11. Description of the HRT Linux Implementation

if (need_resched())

handler->flags |= HRTL_HANDLER_SUSPENDED;

else if (NULL == handler->work) {

handler->work = __hrtl_handler_get_next_work(

handler);

if (NULL == handler->work) {

...

handler->state = HRTL_HANDLER_WAITING;

} else
handler->work_prio = handler->work->prio;

}

...

if (handler->state == HRTL_HANDLER_WAITING)

hrtl_handler_idle(handler, ticket);

else if (!(handler->flags & HRTL_HANDLER_SUSPENDED))

hrtl_handler_do_work(handler);

else
hrtl_handler_resched(handler);

}

...

preempt_enable_no_resched();

...

}

Listing 11.28: System-call handler thread main loop

In every main loop cycle one of three different actions is performed. The thread
calls the main scheduler function (hrtl_handler_resched() → schedule()) if
the resched flag is set. If the flag is not set and a work package is waiting in the queue,
the thread starts or continues executing the package (hrtl_handler_do_work();
Section 11.8.2). If no work package is pending, the thread waits sleeping for a trigger
(hrtl_handler_idle()).

11.8.1. System-Call Redirection

The Linux macros for system-call declaration (SYSCALL_DEFINE. . .) are replaced
by HRTL versions. An additional function call is placed between system-call invo-
cation and execution of the system-call function. On each call it is checked if the
calling task has defined a system-call redirection. In case the system-call has to be
executed by a handler thread, a work package is configured and appended to the
task object. The calling task sets the HRTL_TASK_HANDLER_LOAD flag, prepares
itself for waiting and calls the scheduler main routine. The scheduler function will
notice the HRTL_TASK_HANDLER_LOAD flag and will then enqueue the appended
work package to the handler thread’s queue after the task is suspended.8

The function __hrtl_handler_enqueue_new_work() places a work package
in the handler’s package queue. If the new package should replace the currently

8This step is necessary, because otherwise the work package could be treated by the handler thread
before the calling task is suspended.

176

11.8. System-Call Handler Threads

running package (higher priority), __hrtl_handler_trigger() sends a reschedule
interrupt to the CPU where the handler is running.

static void thread.c

__hrtl_handler_trigger(struct hrtl_handler *handler, int prio)

{

if (handler->state == HRTL_HANDLER_WAITING)

hrtl_event_trigger(&handler->trigger);

else if (handler->work_prio > prio) {

handler->flags |= HRTL_HANDLER_WORK_SCHEDULE;

smp_send_reschedule(task_cpu(handler->thread));

}

}

static int __hrtl_handler_queue_add_tail(struct hrtl_handler *handler,

struct hrtl_handler_work *work)

{

work->state = HRTL_HANDLER_WORK_ENQUEUED;

handler->count_queued++;

__set_work_prio(work);

list_add_tail(&work->list,

&handler->q->prio_queues[work->grp_prio][work->task_prio]);

__set_bit(work->grp_prio, &handler->q->group_prio_bitmap);

return !__test_and_set_bit(work->task_prio,

&handler->q->task_prio_bitmap[work->grp_prio]);

}

static void inline

__hrtl_handler_enqueue_new_work(struct hrtl_handler *handler,

struct hrtl_handler_work *work)

{

if (__hrtl_handler_queue_add_tail(handler, work))

__hrtl_handler_trigger(handler, work->prio);

}

Listing 11.29: Adding a new work package

If the system-call execution is completed, the previously suspended task is woken
up. The result of the system-call function is stored in the work package and returned
to user space.

11.8.2. Work Package Scheduling

Work package scheduling is based on the setjmp()/longjmp() technique known
from the C standard library[Jon91, Chap. 5]. The function hrtl_save_environ-

ment() saves the current environment, at some point of program execution, into a data
structure (__hrtl_environment) that can be used at some later point of program
execution by hrtl_restore_environment() to restore the program state. This
process can be imagined to be a jump back to the point of program execution where the
environment was saved. The return value from hrtl_save_environment() indi-
cates whether control reached that point normally or from a call to hrtl_restore_-

177

Chapter 11. Description of the HRT Linux Implementation

environment(). A work package defines one __hrtl_environment object in
order to store the current execution state. If a running work package should be pre-
empted, the current program state is saved and the handler restores the environment
saved before package execution started.

Since work packages can be preempted by other work packages, each work package
needs its own stack segment for local variables and function calls. A work package is
always connected to a waiting task (the actuator of the system-call). When a work
package is scheduled by a handler thread, the current kernel stack segment is changed
to the stack that belongs to the waiting task.

In order to keep references to user space memory objects valid, the memory segment
of the waiting task is marked to be active. This allows correct user space address
translation from kernel space. All relevant data structures are now valid and available
during system-call execution. Since the current stack segment was changed to the
original one (the one that would be active during normal system-call execution), the
reference to the current task is also correct. The Linux macro current addresses the
task which is currently running. This reference is saved in the stack segment’s header.
Thus, things like, for instance, the file descriptor table will be used from the waiting
task. The system-call execution path does not need to be altered. However, special
care must be taken in the Linux scheduler core when dealing with handler threads
(Section 11.8.4).
static void hrtl_handler_switch_to(struct hrtl_handler *handler)thread.c

{

...

this_cpu_write(current_task, handler->work->p);

hrtl_set_rq_curr(handler->work->p);

this_cpu_write(kernel_stack,

(unsigned long)task_stack_page(handler->work->p) +

THREAD_SIZE - KERNEL_STACK_OFFSET);

switch_mm(handler->thread->active_mm, handler->work->p->mm,

handler->work->p);

...

handler->work->p->state = handler->work->p->hrtl.saved_state;

...

current_thread_info()->cpu = smp_processor_id();

}

static void hrtl_handler_switch_from(struct hrtl_handler *handler)

{

...

handler->work->p->hrtl.saved_state = handler->work->p->state;

handler->work->p->state = TASK_UNINTERRUPTIBLE;

...

}

Listing 11.30: Switch to/from work package context

The two functions hrtl_handler_switch_to() and hrtl_handler_switch-
_from() implement the context switch between handler thread and work package
(Listing 11.30). The current environment is changed in other functions which are

178

11.8. System-Call Handler Threads

discussed later in this section. When switching back from a work package, the actual
task state is saved inside the work package. The task that is connected with the work
package is then changed back to be in a waiting state.

As can be seen in Listing 11.28, work package execution is managed by hrtl_-

handler_do_work(). The function is shown in Listing 11.31. hrtl_save_-

environment() returns a value equal to zero if it was invoked to save the current
environment and a value other than zero if hrtl_restore_environment() was
called. The flag HRTL_HANDLER_WORK_ENTRY is set by the system-call redirection
code and indicates a new call to be started. Each work package starts execution
with hrtl_handler_do_start_work() and finishes with hrtl_handler_do_-

finish_work(). Work package interruptions are treated by hrtl_handler_do_-
handle_jmp_back() and are continued by hrtl_handler_do_continue_call-
back()9.
static void noinline hrtl_handler_do_work(struct hrtl_handler *handler) thread.c

{

...

if (0 != (resched = hrtl_save_environment(handler->_env))) {

/* jmp back from callback... */

hrtl_handler_do_handle_jmp_back(handler, resched);

} else if (handler->work->flags & HRTL_HANDLER_WORK_ENTRY) {

/* start new callback... */

handler->work->flags &= ~HRTL_HANDLER_WORK_ENTRY;

hrtl_handler_do_start_work(handler);

hrtl_handler_do_finish_work(handler);

} else {

/* continue callback... */

hrtl_handler_do_continue_callback(handler);

BUG();

}

...

}

Listing 11.31: Manage work package execution

Starting a new work package and continuing a previously preempted package
switches the current context by calling hrtl_handler_switch_to(). The stack
pointer has to be adjusted for a new package before the defined callback function is
called. Later callbacks (continuations) will consider the correct stack pointer, since it
is included in the saved environment. A call to hrtl_restore_environment()

will continue a previously preempted work package. When the execution of an work
package is completed (return from callback function), the old stack pointer is restored
and the context is switched back to the handler thread.

If a work package is preempted, the function hrtl_handler_do_handle_jmp_-

back() restores the previously saved environment. The work package is enqueued
back to the handlers work package queue if the task state is still TASK_RUNNING.

9hrtl_handler_do_continue_callback() never returns. The work package will ei-
ther be preempted (hrtl_handler_do_handle_jmp_back()) or will return from
hrtl_handler_do_start_work().

179

Chapter 11. Description of the HRT Linux Implementation

Otherwise, the work package was put to a waiting queue during system-call execution.
In this case, the package is put back to the queue. The associated wakeup call will
enqueue the package and trigger the corresponding handler thread. According to
the explanation in Section 10.4.2.1, a work package can be preempted in case the
superior handler thread shall adopt another preempted package from another handler
thread. The work package that initiates the adoption stores (carries) the preempted
package and will be put to a waiting state until the adopted package is completed or
interrupted.

If a handler thread that is executing a work package invokes the Linux scheduler,
the function hrtl_handler_work_schedule() is called. It is the counterpart
to hrtl_handler_do_handle_jmp_back(). The current environment is saved
inside the work package data object and the previously saved environment of the
handler thread is restored.

A previously suspended work package in a sleeping state can be woken up by the
Linux try-to-wakeup mechanism. However, instead of reactivating the connected
task, the work package is sent back to the handler’s queue by __hrtl_handler_-

enqueue_new_work(). A wakeup call to a work package is redirected to hrtl_-

handler_work_wake(). The function behaves like the Linux scheduler function
try_to_wake_up().

11.8.3. Spin-Lock Replacement

The spin-lock macros as defined in include/linux/spinlock.h and spinlock_-
types.h are replaced by HRTL versions. The raw_ variants are untouched and can
still be used. Listing 11.32 shows the spin-lock structure that is introduced by the
HRTL patch.

typedef struct spinlock {spinlock_types.h

struct raw_spinlock rlock;

struct spinlock *nested;

struct task_struct *owner;

unsigned int magic;

struct gtplist_head wait_list[2];

} spinlock_t;

Listing 11.32: HRTL spinlock type

The data type provides two different queues for waiting threads. A thread that tries
to acquire a spin-lock which has already been locked is put to one of these queues.
One of the queues maintains threads that are allowed to be suspended. The other one
holds references to busy waiting threads. The magic variable indicates if the spin-lock
object was initialised correctly. Some kernel code declares and uses spin-lock objects
without using the appropriate spin-lock declaration and initialisation macros.10 If the
magic variable shows that the object was not initialised, and thus the queues for

10For instance, declaring an spin-lock object as a global variable will initialise the memory area with
zero. This can be enough for a traditional spin-lock object.

180

11.8. System-Call Handler Threads

waiting threads were not set up, the spin-lock needs to be initialised on the first use
at runtime.

A spin-lock is claimed when the owner pointer is set to the callers task object. The
pointer is changed by the cmpxchg() command that is provided by x86 architec-
tures.11 If the command did not successfully allocate the spin-lock’s owner pointer,
the spin-lock is either already blocked or is in a transition state. In both cases, the
rlock is taken and the owner reference is modified (Listing 11.33). The appropriate
spin-lock release code will fail on freeing the spin-lock by cmpxchg(), because the
LOCK_HAS_WAITERS flag is set. This forces the release call to also claim the rlock.

#define LOCK_HAS_WAITERS 1UL handler.h

static void __lock_set_waiter_flag(struct spinlock *lock) spinlock.c

{

unsigned long owner, *p = (unsigned long *) &lock->owner;

do {

owner = *p;

} while (cmpxchg(p, owner, owner | LOCK_HAS_WAITERS) != owner);

}

Listing 11.33: Set waiter flag

Before a thread is put to one of the wait queues, it is checked if the spin-lock is
held by a work package that is preempted (is located on a handler thread package
queue). In this case, the calling thread adopts the work package and is suspended
until the adopted package has released the lock. If a spin-lock is released and the
LOCK_HAS_WAITERS flag is set, the thread with the highest priority is triggered.

Once a thread has claimed a spin-lock, no other thread can claim the same lock
before the first thread has released it. For a handler thread executing a work package,
the preemption counter is not modified. This allows the handler thread (and thus the
work package; see Section 11.8.2) inside the lock to be preempted by other threads
and work packages.

11.8.4. Necessary Adjustments

The Linux run-queue structure (rq) is extended by an additional field for starting
system-call work packages. As described in Section 11.8.1 a work package is sent to
the handler thread’s queue after the calling thread is suspended. The main scheduler
routine (__schedule()) stores a starting work package in the run-queue object
before a task switch takes place. The new task will recognize the pending work package
and send it to the handler’s queue by calling hrtl_handler_syscall_start().
This must be done outside the run-queue lock, since the corresponding wakeup call to
the handler thread will also lock the queue.

11The command compares the contents of a memory location (owner) to a given value (NULL) and,
only if they are the same, modifies the contents of that memory location to a given new value
(current).

181

Chapter 11. Description of the HRT Linux Implementation

The public functions schedule(), preempt_schedule(), preempt_schedule_-
irq() and __cond_resched() are patched so that the handler thread scheduler
function (hrtl_handler_work_schedule()) is called instead of __schedule()
in case the calling thread is executing a work package. Listing 11.34 shows the modifi-
cation for schedule(). The other functions are patched in a similar way.

asmlinkage void __sched schedule(void)core.c

{

...

#ifdef CONFIG_HRTL

if (current->hrtl.flags & HRTL_TASK_HANDLER_PATH)

hrtl_handler_work_schedule();

else
__schedule();

#else
__schedule();

#endif
}

Listing 11.34: Scheduler modification for work packages

The main wakeup function try_to_wake_up() is extended so that the han-
dler thread wakeup function (hrtl_handler_work_wake()) is called in case the
addressed thread is executing a work package. Furthermore, threads waiting on a
spin-lock are not woken up by Linux calls.

11.9. Real-Time Application Programming

The HRTL extension introduces new system-calls to the Linux kernel. A user-space
library is provided for ease use of the HRTL patch (Section 11.9.1.1). Example
applications can be seen in Section 11.9.2.

11.9.1. User-Space Interface

System-calls added by the HRTL extension are listed in Table 11.2.

Name Number Parameter

hrtl_entity 1024 1 enum hrtl_entity_domain domain

2 enum hrtl_entity_fct function

3 union hrtl_entity_arg arg1

4 union hrtl_entity_arg arg2

hrtl_core 1025 1 enum hrtl_core_fct function

2 union hrtl_core_arg arg1

3 union hrtl_core_arg arg2

hrtl_system 1026 1 enum hrtl_system_fct function

2 union hrtl_system_arg arg1

3 union hrtl_system_arg arg2

182

11.9. Real-Time Application Programming

4 union hrtl_system_arg arg3

5 union hrtl_system_arg arg4

hrtl_sched_getparam 1027 1 pid_t pid

2 struct hrtl_sched_param * param

hrtl_sched_setparam 1028 1 pid_t pid

2 struct hrtl_sched_param * param

hrtl_housekeeping 1029 1 int flags

hrtl_sched_setfork 1030 1 pid_t pid

2 struct hrtl_sched_fork * fork

hrtl_sched_getfork 1031 1 pid_t pid

2 struct hrtl_sched_fork * fork

hrtl_getgroup 1032 1 pid_t pid

hrtl_getcore 1033 1 pid_t pid

hrtl_getperiod 1034 1 hrtl_period_t * period

hrtl_shutdown 1035 none

hrtl_profile 1036 1 enum hrtl_profile_fct function

2 union hrtl_profile_arg arg1

3 union hrtl_profile_arg arg2

hrtl_event_trigger 1037 1 hrtl_id_t id

hrtl_event_wait 1038 1 hrtl_id_t id

hrtl_event_core_wait 1039 1 hrtl_id_t id

hrtl_event_wait_count 1040 1 hrtl_id_t id

2 unsigned int count

hrtl_event_get_count 1041 1 hrtl_id_t id

hrtl_cache_disable 1042 none

hrtl_cache_enable 1043 none

Table 11.2.: Listing of HRTL systemcalls

The system-calls are used by the HRTL user-space library. Description of datatypes
can be found in Section 11.9.1.1.

11.9.1.1. Library

The HRTL user-space library defines 149 functions. Not all of these functions are
discussed in this section (e.g. sorting and iteration lists exported by the kernel to
user-space). The complete HRTL user-space library can be accessed at [Rad15b].

sched_setparam, sched_getparam set and get scheduling parameters

int libhrtl_sched_setparam(pid_t pid,

const struct hrtl_sched_param *param);

int libhrtl_sched_getparam(pid_t pid,

struct hrtl_sched_param *param);

183

Chapter 11. Description of the HRT Linux Implementation

struct hrtl_sched_param {

unsigned int flags;

unsigned int prio;

hrtl_time_t runtime;

unsigned int period;

};

libhrtl_sched_setparam() sets the scheduling parameters associated with
the scheduling module for the process identified by pid. If pid is zero, then the
parameters of the calling process are set.

libhrtl_sched_getparam() retrieves the scheduling parameters for the process
identified by pid. If pid is zero, then the parameters of the calling process are
retrieved.

The flags argument is constructed as the bitwise or of one or more of the following
constants:

HRTL_TASK_YIELD_CYCLE A call to sched_yield() will cause the process to
be suspended until the next cycle starts.

HRTL_TASK_DEADLINE Depending on the selected scheduler module, this flag
enables the periodic task mode.

HRTL_TASK_SIGNALS The process receives an POSIX signal in case a deadline
was missed.

Returns: 0 on success, < 0 on error

Errors: EINVAL The argument param does not make sense.

EFAULT Memory copy from/to user-space failed.

ESRCH The process whose ID is pid could not be found.

EPERM The calling process does not have appropriate privileges.

set_fork, get_fork set and get fork parameters

int libhrtl_sched_setfork(pid_t pid,

const struct hrtl_sched_fork *fork);

int libhrtl_sched_getfork(pid_t pid,

struct hrtl_sched_fork *fork);

int libhrtl_profile_set_fork(hrtl_key_t key,

const struct hrtl_sched_fork *fork);

int libhrtl_profile_get_fork(hrtl_key_t key,

struct hrtl_sched_fork *fork);

int libhrtl_group_set_fork(hrtl_id_t id,

const struct hrtl_sched_fork *fork);

int libhrtl_group_get_fork(hrtl_id_t id,

struct hrtl_sched_fork *fork);

struct hrtl_sched_fork {

hrtl_id_t group_id;

struct hrtl_sched_param param;

};

184

11.9. Real-Time Application Programming

libhrtl_sched_setfork() sets the fork parameters for the process identi-
fied by pid. If pid is zero, then the parameters of the calling process are set.
libhrtl_profile_set_fork() sets the fork parameters for the profile iden-
tified by key. libhrtl_group_set_fork() sets the fork parameters for the
group identified by id.

libhrtl_sched_getfork() retrieves the fork parameters for the process identi-
fied by pid. If pid is zero, then the parameters of the calling process are retrieved.
libhrtl_profile_get_fork() retrieves the fork parameters for the profile
identified by key. libhrtl_group_get_fork() retrieves the fork parameters
for the group identified by id.

The argument param will be set for a new process via libhrtl_sched_setparam().
The new process will be forked inside the group specified by group_id.

Returns: 0 on success, < 0 on error

Errors: EINVAL The argument param does not make sense.

No fork parameters are defined.

EFAULT Memory copy from/to user-space failed.

ESRCH The process whose ID is pid could not be found.

The group whose ID is id could not be found.

The profile whose KEY is key could not be found.

EPERM The calling process does not have appropriate privileges.

EBUSY The current scheduler module does not allow modifications.

start_rt, stop_rt set and clear task real-time status

int libhrtl_sched_start_rt(pid_t pid,

hrtl_id_t group_id);

int libhrtl_sched_start_rt_no_mlock(pid_t pid,

hrtl_id_t group_id);

int libhrtl_sched_stop_rt(pid_t pid);

libhrtl_sched_start_rt*() adds the process identified by pid to the group
identified by group_id. If pid is zero, then the calling process is assigned. On
success, libhrtl_sched_start_rt() locks all of the identified process’s virtual
address space into RAM, preventing that memory from being paged to the swap
area.

libhrtl_sched_stop_rt() removes the process identified by pid from the
group the process is currently running in. If pid is zero, then the calling process is
removed. Previously locked memory is unlocked on success.

185

Chapter 11. Description of the HRT Linux Implementation

Returns: 0 on success, < 0 on error

Errors: ESRCH The process whose ID is pid could not be found.

The group whose ID is id could not be found.

EPERM The calling process does not have appropriate privileges.

EBUSY The group’s scheduler module does not allow modifications.

housekeeping perform housekeeping

int libhrtl_housekeeping(unsigned int flags);

Perform housekeeping actions according to the description in Section 10.2.3.

Returns: 0 on success, < 0 on error

Errors: EINVAL The calling task is running in a dynamic partition.

ECANCELED The calling task is not running in a real-time partition.

getgroup, getcore, getperiod get task runtime environment information

int libhrtl_getgroup(pid_t pid);

int libhrtl_getcore(pid_t pid);

int libhrtl_getperiod(hrtl_period_t *period);

typedef struct hrtl_period_val {

unsigned long count;

hrtl_time_t time;

} hrtl_period_val_t;

typedef struct hrtl_period {

hrtl_period_val_t val;

hrtl_time_t runtime;

} hrtl_period_t;

libhrtl_getgroup() and libhrtl_getcore() return the current group ID
respectively core ID where the process identified by pid is running in. If pid is
zero, then the parameter for the calling process is returned.

libhrtl_getperiod() retrieves timing information of the calling process (Sec-
tion 11.1).

Returns: 0 or ID on success, < 0 on error

Errors: EINVAL The calling task is not running in a real-time partition.

EFAULT Memory copy to user-space failed.

ESRCH The process whose ID is pid could not be found.

EPERM The calling process does not have appropriate privileges.

event_wait, event_trigger event handling (Section 11.3.3)

int libhrtl_event_wait(hrtl_id_t id);

int libhrtl_event_wait_count(hrtl_id_t id,

186

11.9. Real-Time Application Programming

unsigned int count);

int libhrtl_event_core_wait(hrtl_id_t id);

int libhrtl_event_group_wait(hrtl_id_t id);

int libhrtl_event_get_count(hrtl_id_t id);

int libhrtl_event_trigger(hrtl_id_t id);

libhrtl_event_wait*() suspends the calling process until the event identified
by id is triggered. libhrtl_event_wait_count() allows to specify a counter
value of event occurrences. If the counter does not match the current event counter,
the calling process will not be suspended.

libhrtl_event_core_wait() and libhrtl_event_group_wait() suspend
the calling process until the group respectively core identified by id starts the next
cycle.

Returns: 0 or counter on success, < 0 on error

Errors: EINVAL Parameter id is not in range.

ENOKEY The event, core or group identified by id does not exist.

EINTR An unblocked POSIX signal was caught.

system_get get system information

int libhrtl_system_get_version(hrtl_version_t *version);

int libhrtl_system_get_info(hrtl_system_info_t *info);

int libhrtl_system_get_cpus_available(size_t setsize, cpu_set_t *mask);

int libhrtl_system_get_cpus_allowed(size_t setsize, cpu_set_t *mask);

int libhrtl_system_get_cpus_reserved(size_t setsize, cpu_set_t *mask);

typedef struct hrtl_version {

unsigned int major;

unsigned int minor;

} hrtl_version_t;

typedef struct hrtl_system_arg_info {

struct hrtl_version version;

unsigned int abi_revision;

unsigned int timer_unit_ns;

int system_cpu;

struct {

struct hrtl_key_range system_key_range;

struct hrtl_key_range resource_key_range;

unsigned int max_core;

unsigned int max_group;

hrtl_time_t core_runtime_min;

hrtl_time_t core_runtime_max;

hrtl_time_t group_runtime_min;

hrtl_time_t group_runtime_max;

hrtl_time_t idletime_min;

hrtl_time_t idletime_max;

hrtl_time_t task_runtime_min;

187

Chapter 11. Description of the HRT Linux Implementation

hrtl_time_t task_runtime_max;

unsigned int prio_levels;

} limit;

} hrtl_system_info_t;

libhrtl_system_get_info() returns a hrtl_system_info_t block with
several system constans.

Returns: 0 on success, < 0 on error

Errors: EFAULT Memory copy to user-space failed.

system_reserve, system_release CPU reservation

int libhrtl_system_reserve(int cpu,

hrtl_key_t profile,

hrtl_id_t core);

int libhrtl_system_reserve_sync(int cpu,

hrtl_key_t profile,

hrtl_id_t core,

hrtl_id_t sync_core);

int libhrtl_system_release(int cpu);

int libhrtl_shutdown(void);

libhrtl_system_reserve*() claims or reserves the CPU specified by cpu.
If cpu is set to -1, the first free available CPU will be reserved. The parameters
profile and core specify the KEY and the ID of the objects as described in Sec-
tion 11.4. libhrtl_system_reserve_sync() allows to specify an additional
core object that is already running on a reserved CPU. The core identified by core

will run in sync with the core identified by sync_core. Both core objects need to
have the same runtime parameters.

libhrtl_system_release() releases the CPU specified by cpu. libhrtl_-
shutdown() releases all CPUs currently reserved.

Returns: 0 or CPU on success, < 0 on error

Errors: ENOSPC No free CPU is available.

ENOKEY The core identified by core does not exist.

The profile identified by profile does not exist.

EALREADY CPU specified by cpu is already reserved.

EIO System error.

EPERM The calling process does not have appropriate privileges.

EINVAL Parameter cpu is not in range.

ECANCELED CPU specified by cpu is not reserved.

request_irq, release_irq enable and disable interrupts

int libhrtl_system_request_irq(int cpu, unsigned int irq);

int libhrtl_system_release_irq(int cpu, unsigned int irq);

188

11.9. Real-Time Application Programming

After a process has been given real-time status, no interrupt requests are relayed to
the reserved CPU any more. The calling process can enable single IRQs by means of
libhrtl_system_request_irq(). The requested interrupts will be delivered
exclusively to the reserved CPU.

libhrtl_system_release_irq() disables the delivery of the specified IRQ to
the reserved CPU. Afterwards, the IRQ will be delivered to all non-reserved CPUs.

Returns: 0 on success, < 0 on error

Errors: EINVAL Parameter cpu is not in range.

Parameter irq is not in range.

EALREADY IRQ specified by irq is already assigned/released.

EIO System error.

ECANCELED CPU specified by cpu is not reserved.

cache_disable, cache_enable enable and disable cache

int libhrtl_cache_disable(void);
int libhrtl_cache_enable(void);

Disable or enable the cache of the CPU where the function is called.

Returns: 0 on success, < 0 on error

Errors: ECANCELED Calling process is not HRTL process.

create, destroy create and delete objects

int libhrtl_profile_create(const struct hrtl_entity_arg_create *cr,

const hrtl_profile_create_data_t *data);

int libhrtl_profile_destroy(hrtl_key_t key);

int libhrtl_handler_create(const struct hrtl_entity_arg_create *cr);

int libhrtl_handler_destroy(hrtl_id_t id);

int libhrtl_group_create(const struct hrtl_entity_arg_create *cr,

const hrtl_group_create_t *data);

int libhrtl_group_destroy(hrtl_id_t id);

int libhrtl_core_create(const struct hrtl_entity_arg_create *cr,

const hrtl_core_create_data_t *data);

int libhrtl_core_destroy(hrtl_id_t id);

int libhrtl_event_create(const struct hrtl_entity_arg_create *cr);

int libhrtl_event_destroy(hrtl_id_t id);

struct hrtl_entity_arg_create {

char name[HRTL_NAME_LEN];

hrtl_key_t key;

};

typedef struct hrtl_entity_profile_create {

hrtl_key_t clock_source;

hrtl_key_t timer_device;

} hrtl_profile_create_data_t;

189

Chapter 11. Description of the HRT Linux Implementation

typedef struct hrtl_entity_core_create {

hrtl_time_t runtime;

} hrtl_core_create_data_t;

enum hrtl_group_type {

HRTL_GROUP_STATIC,

HRTL_GROUP_DYNAMIC,

};

typedef struct hrtl_entity_group_create {

enum hrtl_group_type type;

union {

struct {

hrtl_time_t runtime;

} static_grp;

struct {

unsigned int rt_budget;

unsigned int budget;

} dynamic_grp;

};

} hrtl_group_create_t;

Create or destroy core, group, system-call handler and event objects.

Returns: 0 on success, < 0 on error

Errors: EINVAL The argument cr ot data does not make sense.

EFAULT Memory copy from user-space failed.

EPERM The calling process does not have appropriate privileges.

ENOSPC No space available for a new object.

by_key, by_id get object identifiers

hrtl_id_t libhrtl_handler_by_key(hrtl_key_t key);

hrtl_key_t libhrtl_handler_by_id(hrtl_id_t id);

hrtl_id_t libhrtl_group_by_key(hrtl_key_t key);

hrtl_key_t libhrtl_group_by_id(hrtl_id_t id);

hrtl_id_t libhrtl_core_by_key(hrtl_key_t key);

hrtl_key_t libhrtl_core_by_id(hrtl_id_t id);

hrtl_id_t libhrtl_event_by_key(hrtl_key_t key);

hrtl_key_t libhrtl_event_by_id(hrtl_id_t id);

Get KEY respectively ID of an object.

Returns: KEY or ID on success, < 0 on error

Errors: ESRCH The object whose ID is id could not be found.

The object whose KEY is key could not be found.

chmod, chown change object owner and mode bits

190

11.9. Real-Time Application Programming

int libhrtl_profile_chmod(hrtl_key_t key, short mode);

int libhrtl_profile_chown(hrtl_key_t key, hrtl_user_t *user);

int libhrtl_group_chmod(hrtl_id_t id, short mode);

int libhrtl_group_chown(hrtl_id_t id, struct hrtl_user *user);

int libhrtl_core_chmod(hrtl_id_t id, short mode);

int libhrtl_core_chown(hrtl_id_t id, struct hrtl_user *user);

int libhrtl_event_chmod(hrtl_id_t id, short mode);

int libhrtl_event_chown(hrtl_id_t id, struct hrtl_user *user);

struct hrtl_user {

uid_t uid, cuid;

gid_t gid, cgid;

};

These calls change the permissions and the owner of an object. The new permissions
are specified in mode. The flags for mode are described in the documentation of
the chmod() Linux system-call.

Returns: KEY or ID on success, < 0 on error

Errors: ESRCH The object whose ID is id could not be found.

The object whose KEY is key could not be found.

EPERM The calling process does not have appropriate privileges.

handler_start, handler_stop start and stop system-call handler

int libhrtl_handler_start(hrtl_id_t id);

int libhrtl_handler_stop(hrtl_id_t id);

int libhrtl_handler_getpid(hrtl_id_t id);

Start or stop a handler thread identified by id.

Returns: 0 or PID on success, < 0 on error

Errors: ESRCH The handler whose ID is id could not be found.

EALREADY Handler is already running/stopped

add_group, del_group connect and disconnect group with core

int libhrtl_core_add_group(hrtl_id_t id, hrtl_id_t grp_id);

int libhrtl_core_del_group(hrtl_id_t id, hrtl_id_t grp_id);

Connect or disconnect core and group objects.

Returns: 0 on success, < 0 on error

Errors: ESRCH The object whose ID is id or grp_id could not be found.

EALREADY Group with ID grp_id is already connected.

ENOSPC The specified core object does not have enough free space.

deadline_events deadline watchdog interface

191

Chapter 11. Description of the HRT Linux Implementation

int libhrtl_profile_register_deadline_watchdog(hrtl_key_t key);

int libhrtl_profile_deregister_deadline_watchdog(void);
int libhrtl_profile_get_deadline_events(struct hrtl_deadline_info *

buffer,

unsigned int limit);

libhrtl_profile_register_deadline_watchdog() registers the calling
process to be the deadline watchdog for the profile identified by key. A process can
deregister itself by calling libhrtl_profile_deregister_deadline_watchdog().

A registered deadline watchdog can retrieve deadline events (Section 11.6.5) by
calling libhrtl_profile_get_deadline_events(). The maximum number
of available deadline events as giving in parameter limit will be copied to the
memory area specified by buffer.

Returns: 0 or number of events on success, < 0 on error

Errors: ESRCH The profile whose KEY is key could not be found.

EALREADY Profile with KEY key is already connected.

Calling process is already a deadline watchdog.

ECANCELED Calling process is not a registered deadline watchdog.

set_sched, clear_sched set and clear secheduler module for group

int libhrtl_group_set_sched(hrtl_id_t id, hrtl_key_t sched_key);

int libhrtl_group_clear_sched(hrtl_id_t id);

Assign scheduler module specified by sched_key to group identified by id. An
already assigned module can be removed by libhrtl_group_clear_sched().

Returns: 0 or number of events on success, < 0 on error

Errors: ESRCH The module whose KEY is sched_key could not be
found.

The group whose ID id id could not be found.

EALREADY Group with ID id has already a module assigned.

ECANCELED Module can not be assigned to group.

EPERM The calling process does not have appropriate privileges.

syscall_connect, syscall_disconnect connect and disconnect group with
system-call handler

int libhrtl_group_syscall_connect(hrtl_id_t id, hrtl_id_t handler_id);

int libhrtl_group_syscall_disconnect(hrtl_id_t id);

Connect system-call handler thread specified by handler_id with group identified
by id. An already assigned thread can be removed by libhrtl_group_syscall_disconnect()

192

11.9. Real-Time Application Programming

Returns: 0 on success, < 0 on error

Errors: ESRCH The handler whose ID is handler_id could not be
found.

The group whose ID id id could not be found.

EALREADY Group with ID id has already a handler assigned.

ECANCELED Handler thread is defined but not started.

EPERM The calling process does not have appropriate privileges.

11.9.2. Benchmarking

The benchmark tests described in Section 5.4.3 are discussed in this section in concrete
implementation for the HRTL extension. In Chapter 12 the benchmark results are
compared and evaluated to other real-time operating systems. The values presented
in this section are the results from executing the same tests for a patched and a
non-patched kernel12. The tests for the unpatched kernel were already described in
Section 6.5. All benchmark results can be accessed at http://www.informatik.
uni-bremen.de/agbs/dirkr/HRTL/benchmark_results.tgz.

11.9.2.1. Task Period Tests

Listing 11.35 shows the HRTL 500μs periodic task benchmark test implementation.
The setup function setup() is called early in the main function. The function
creates a profile, core and a group object with the API calls explained in Sec-
tion 11.9.1.1. The core object has a defined cycle time of 5 seconds and contains
only the defined group object which has the same cycle time. A free CPU is re-
served for the core object. After the benchmark process was added to the partition
(libhrtl_sched_start_rt()), the HRTL_TASK_YIELD_CYCLE flag is set (Sec-
tion 11.6.4). A sched_yield() system-call blocks until the programmed period
expires (libhrtl_set_task_deadline()). The memory area for the measure-
ment results (tsc[]) is touched before executing the main loop. As described in
Section 6.4 this is necessary to cause a stack fault before the test starts.

int main(int argc, char **argv) { period_us.c

uint32_t tsc[LOOP_COUNT];

...

runtime_us = hrtl_us_to_time(atoi(argv[1]));

...

if (0 > setup())

exit(EXIT_FAILURE);

libhrtl_sched_start_rt(getpid(), grp);

libhrtl_set_task_yield_cycle();

/* pre-fault stack */

12Linux kernel version 3.5.7

193

Chapter 11. Description of the HRT Linux Implementation

for (i = 0; i < LOOP_COUNT; i++)

rdtsc_32(tsc[i]);

if (0 > libhrtl_set_task_deadline(runtime_us))

exit(EXIT_FAILURE);

sched_yield();

for (i = 0; i < LOOP_COUNT; i++) {

sched_yield();

rdtscp_32(tsc[i]);

cpuid();

#ifdef TRIGGER_PARPORT

parport_toggle();

#else
busy();

#endif
}

...

}

Listing 11.35: HRTL period task benchmark test (μs)

The first benchmark test for the HRTL extension operating system measures the
scheduling precision of a periodic task with a period of 500 μs (Table 11.3). The test
was executed in the 3 scenarios described in Section 5.3.

Scenario Average Min Max Gap Deviation

Normal 499.952 499.863 500.026 0.163 0.022

CPU utilization 499.952 499.852 500.052 0.200 0.040

I/O utilization 499.952 499.179 500.573 1.394 0.147

Table 11.3.: Benchmark test results [μs]: HRTL period task (500μs)

Like for the RT-Preempt extension and the HLRT patch the results in the table
were converted to the μs scala. The precision of the 500 μs timer is almost met.
Compared with the results of the same benchmark test on a native Linux kernel
system (Table 11.4) it is easy to see, that the extension brings a higher precision for
a small timer to the Linux operating system. Like mentioned before the test was
executed with the same kernel without applying the HRTL patch.

Scenario Average Min Max Gap Deviation

Normal 499.951 495.025 505.014 9.989 1.669

CPU utilization 499.956 490.280 509.615 19.335 2.667

I/O utilization 499.925 493.415 504.886 11.471 2.151

Table 11.4.: Benchmark test results [μs]: Linux 3.5.7 period task (500μs)

194

11.9. Real-Time Application Programming

The remaining periodic task benchmark tests implement another approach to realise
periodic task behavior. Instead of programming a task period via libhrtl_set_-

task_deadline() the main cycle of the core object is set to the desired period. A
sched_yield() system-call blocks until the next cycle of the core object starts.

Table 11.5 and Table 11.6 show the results of the periodic benchmark test with a
period of 10 ms.

Scenario Average Min Max Gap Deviation

Normal 9999.043 9998.971 9999.118 0.147 0.029

CPU utilization 9999.043 9998.961 9999.104 0.143 0.026

I/O utilization 9999.041 9998.449 9999.636 1.187 0.104

Table 11.5.: Benchmark test results [μs]: HRTL period task (10ms)

Scenario Average Min Max Gap Deviation

Normal 9999.043 9994.483 10003.661 9.179 1.347

CPU utilization 9999.062 9918.925 10090.022 171.098 12.500

I/O utilization 9999.049 9985.611 10012.510 26.899 3.559

Table 11.6.: Benchmark test results [μs]: Linux 3.5.7 period task (10ms)

The same test is repeated with a 100 ms (Table 11.7 and Table 11.8) and a 1 second
timer (Table 11.9 and Table 11.10). Nevertheless, the test is only executed in the
normal scenario.

Scenario Average Min Max Gap Deviation

Normal 99990.429 99990.357 99990.501 0.144 0.023

Table 11.7.: Benchmark test results [μs]: HRTL period task (100ms)

Scenario Average Min Max Gap Deviation

Normal 99990.427 99985.325 99995.551 10.226 0.809

Table 11.8.: Benchmark test results [μs]: Linux 3.5.7 period task (100ms)

Scenario Average Min Max Gap Deviation

Normal 999904.298 999904.204 999904.369 0.165 0.022

Table 11.9.: Benchmark test results [μs]: HRTL period task (1sec)

195

Chapter 11. Description of the HRT Linux Implementation

Scenario Average Min Max Gap Deviation

Normal 999904.298 999899.919 999909.573 9.653 0.661

Table 11.10.: Benchmark test results [μs]: Linux 3.5.7 period task (1sec)

11.9.2.2. Task Switch Tests

As described in Section 5.2.1 two different tests for measuring task switch latency are
implemented. Like before in the periodic task benchmarking these tests are performed
in the scenarios described for a native Linux kernel and a HRTL system.

Listing 11.36 shows the implementation of the startup routine for the task preemption
latency benchmark test. Two HRTL events (fork_event and wait_event) are
used to synchronise the start of the test. Since, actually three different processes are
involved in test executing, the results are stored in a shared memory segment. The
initialisation of the semaphores and the shared memory segment are not shown in the
listing.

int main(int argc, char **argv) {
switch_...signal.c

struct hrtl_sched_fork hrtl_fork;

...

if (0 > setup())

exit(EXIT_FAILURE);

...

libhrtl_set_task_prio(HRTL_PRIO_MAX);

hrtl_fork.group_id = grp;

hrtl_fork.param.prio = HRTL_PRIO_MAX - 1;

hrtl_fork.param.runtime = HRTL_DEFAULT_TASK_RUNTIME;

hrtl_fork.param.period = HRTL_PERIOD_MIN;

libhrtl_sched_setfork(getpid(), &hrtl_fork);

if (0 > libhrtl_sched_start_rt(getpid(), grp))

exit(EXIT_FAILURE);

if (0 == (high = fork()))

task_high(1);

else
libhrtl_event_wait(fork_event);

hrtl_fork.param.prio = HRTL_PRIO_MAX - 2;

libhrtl_sched_setfork(getpid(), &hrtl_fork);

if (0 == fork())

task_low(0, high);

else
libhrtl_event_wait(fork_event);

...

libhrtl_event_trigger(wait_event);

libhrtl_set_task_prio(HRTL_PRIO_MIN);

...

196

11.9. Real-Time Application Programming

}

Listing 11.36: HRTL task preemption benchmark test startup

Two processes are forked during test startup. According to Section 11.5.2 the new
processes are placed in the real-time partition with the defined priority levels. One of
the HRTL events (fork_event) is used here to let the main process block until the
new created process finishes its own setup phase. After both processes have finished
their startup the main process fires the second event (wait_event) and lowers its
priority level. Both forked processes have higher priority than the main process now.
If they terminate, the main process comes back to life and finishes the benchmark
test by printing the results.

The main test takes place between the new created processes. The program code is
not shown here. It is almost the same as for the Linux task creation benchmark test
(Listing 6.8). Table 11.11 and Table 11.12 show the results of the test.

Scenario Average Min Max Gap Deviation

Normal 1.517 1.510 1.526 0.016 0.002

CPU utilization 1.522 1.501 1.554 0.053 0.003

I/O utilization 1.529 1.520 1.544 0.024 0.002

Table 11.11.: Benchmark test results [μs]: HRTL preempt task (signal)

Scenario Average Min Max Gap Deviation

Normal 1.624 1.620 1.675 0.056 0.007

CPU utilization 1.616 1.593 2.240 0.647 0.050

I/O utilization 1.596 1.583 1.703 0.120 0.010

Table 11.12.: Benchmark test results [μs]: Linux 3.5.7 preempt task (signal)

The main test is implemented in two different variants. One uses the POSIX signal
mechanism to trigger the higher priority task. The other version of the test uses an
additional HRTL event for triggering the higher priority task. Listing 11.37 shows
the main routines for both tasks. After performing the startup synchronisation as
mentioned above, the benchmark test starts with entering the for loop. task_low
triggers the event (preempt_event) for waking up the higher priority task.

void task_low(int idx) {
switch_...event.c

...

libhrtl_event_trigger(fork_event);

libhrtl_event_wait(wait_event);

for (i = 0; i < LOOP_COUNT; i++) {

busy_long();

cpuid();

197

Chapter 11. Description of the HRT Linux Implementation

rdtsc_32(tsc[i]);

libhrtl_event_trigger(preempt_event);

}

...

}

void task_high(int idx) {

...

libhrtl_event_trigger(fork_event);

libhrtl_event_wait(wait_event);

for (i = 0; i < LOOP_COUNT; i++) {

busy_long();

libhrtl_event_wait(preempt_event);

rdtscp_32(tsc[i]);

cpuid();

}

...

}

Listing 11.37: HRTL task preemption benchmark test

The benchmark test was executed in the 3 scenarios described in Section 5.3.
Table 11.13 shows the results of the test.

Scenario Average Min Max Gap Deviation

Normal 0.749 0.740 0.766 0.026 0.011

CPU utilization 0.751 0.736 0.786 0.050 0.014

I/O utilization 0.752 0.737 0.778 0.041 0.012

Table 11.13.: Benchmark test results [μs]: HRTL preempt task (event)

The second benchmark test for measuring the task switch latency is also described
in Section 5.4.3.2. As explained in Section 6.5.2 the arrangement of the shared memory
segment is more complicated compared to the task preemption time benchmark test.
The layout for the shared memory segment can be seen in Listing 6.9.

The test startup is almost the same as for the task preemption benchmark test
before. Details are not printed here. All processes needed for the test execution are
forked within the main process and use the same synchronisation mechanism (HRTL
events). The actual task switch is invoked by calling the sched_yield() system
call.

Table 11.14 presents the results of the task switch latency benchmark test for the
HRTL system with two alternating processes. The same test was repeated with 16
(Table 11.16), 128 (Table 11.18) and 512 (Table 11.20) switching processes. As can be
seen, the time required for a task switch increases with more involved processes.

198

11.9. Real-Time Application Programming

Scenario Average Min Max Gap Deviation

Normal 0.471 0.453 0.484 0.031 0.002

CPU utilization 0.469 0.451 0.494 0.043 0.002

I/O utilization 0.474 0.460 0.491 0.031 0.007

Table 11.14.: Benchmark test results [μs]: HRTL switch task (2 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.475 0.471 0.516 0.044 0.006

CPU utilization 0.475 0.471 0.521 0.050 0.007

I/O utilization 0.487 0.479 0.524 0.046 0.005

Table 11.15.: Benchmark test results [μs]: Linux 3.5.7 switch task (2 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.574 0.536 0.611 0.076 0.014

Table 11.16.: Benchmark test results [μs]: HRTL switch task (16 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.582 0.548 0.634 0.086 0.014

Table 11.17.: Benchmark test results [μs]: Linux 3.5.7 switch task (16 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.778 0.710 0.857 0.147 0.030

Table 11.18.: Benchmark test results [μs]: HRTL switch task (128 tasks)

Scenario Average Min Max Gap Deviation

Normal 0.811 0.734 0.907 0.173 0.030

Table 11.19.: Benchmark test results [μs]: Linux 3.5.7 switch task (128 tasks)

Scenario Average Min Max Gap Deviation

Normal 1.219 0.980 1.543 0.563 0.109

Table 11.20.: Benchmark test results [μs]: HRTL switch task (512 tasks)

11.9.2.3. Task Creation Test

The task creation benchmark test measures the time it takes for creating a new process.
According to the description in Section 5.4.3.3 a new task is spawned in each test

199

Chapter 11. Description of the HRT Linux Implementation

Scenario Average Min Max Gap Deviation

Normal 1.226 1.041 1.548 0.507 0.091

Table 11.21.: Benchmark test results [μs]: Linux 3.5.7 switch task (512 tasks)

step within the test main loop by calling the fork() system call. Time is measured
immediately before and after (in the new process) invoking fork(). To transfer the
second measurement value to the main process a shared memory segment is used.
Listing 11.38 shows the implementation of the task creation benchmark test for the
HRTL extension.

void task(void) {fork_high_prio.c

...

hrtl_fork.group_id = grp;

hrtl_fork.param.prio = HRTL_PRIO_MAX - 1;

...

libhrtl_sched_setfork(getpid(), &hrtl_fork);

...

libhrtl_event_trigger(fork_event);

libhrtl_event_wait(wait_event);

...

for (i = 0; i < LOOP_COUNT; i++) {

res->start[i].pid = pid;

cpuid();

rdtsc_32(tsc);

if (0 == fork()) {

rdtscp_32(tsc);

cpuid();

res->stop[i].pid = getpid();

res->stop[i].tsc = tsc;

exit(EXIT_SUCCESS);

}

res->start[i].tsc = tsc;

busy_long();

sched_yield();

}

...

libhrtl_event_trigger(wait_event);

...

}

int main(int argc, char **argv) {

...

libhrtl_set_task_prio(HRTL_PRIO_MAX);

hrtl_fork.group_id = grp;

hrtl_fork.param.prio = HRTL_PRIO_MAX - 2;

...

libhrtl_sched_setfork(getpid(), &hrtl_fork);

...

200

11.9. Real-Time Application Programming

if (0 == fork())

task();

else
libhrtl_event_wait(fork_event);

...

libhrtl_event_trigger(wait_event);

libhrtl_event_wait(wait_event);

...

}

Listing 11.38: HRTL task creation benchmark test

The startup procedure is almost the same as for the previously introduced tests.
task() implements the main test function. In each iteration of the for loop, a new
process is created. The new process starts with a higher priority level according to
the definition in hrtl_fork.param.prio.

The results of the task creation benchmark test are shown in Table 11.22 and
Table 11.23. The measured times in a HRTL extension kernel are slightly higher
compared to a native Linux kernel. This is because adding the new task to the defined
partition creates some overhead.

Scenario Average Min Max Gap Deviation

Normal 28.011 25.067 31.864 6.798 1.436

CPU utilization 31.898 28.509 37.138 8.629 1.612

I/O utilization 27.861 25.212 33.284 8.072 1.493

Table 11.22.: Benchmark test results [μs]: HRTL task creation

Scenario Average Min Max Gap Deviation

Normal 24.059 23.487 29.045 5.558 0.494

CPU utilization 28.669 26.721 32.790 6.069 1.139

I/O utilization 24.484 23.771 30.203 6.432 0.639

Table 11.23.: Benchmark test results [μs]: Linux 3.5.7 task creation

11.9.2.4. Interrupt Tests

The implementation of the interrupt benchmark tests as described in Section 5.4.3.4
are explained in this section. For the realisation of the tests, it is necessary to enhance
the kernel with a module which implements the interrupt handler. The module uses
the HRTL interrupt mechanism as explained in Section 11.6.3. Listing 11.39 shows
the initialisation function of the module.

static enum irq_benchmark.c

hrtl_irq_result irq_latency_hw_handler(unsigned int irq_nr,

201

Chapter 11. Description of the HRT Linux Implementation

struct hrtl_hw_irq *hw_irq)

{

rdtsc_32(tsc);

return HRTL_IRQ_HANDLED;

}

static struct hrtl_irq irq_latency_hw_irq = {

.name = "latency_hw_irq",

.handler = irq_latency_hw_handler,

};

static int __init init_interrupt_latency(void)
{

...

hrtl_hw_irq_init(&irq_latency_hw_irq);

retval = hrtl_hw_irq_connect(&irq_latency_hw_irq, PARALLEL_IRQ);

...

}

Listing 11.39: HRTL benchmark interrupt handler

After loading the module, an interrupt handler is registered for the parallel port.
For the interrupt latency and interrupt dispatch latency benchmarks the handler just
captures the current value of the TSC register and returns. For the interrupt to task
latency benchmarks the handler has to be extended (Listing 11.40). This is triggered
via the proc interface. A HRTL key for a partition is received by the module’s proc
write() function. The module then registers a threaded interrupt handler in that
partition.

static enumirq_benchmark.c

hrtl_irq_result irq_latency_handler(struct hrtl_irq *irq)

{

rdtscp_32(tsc);

cpuid();

return HRTL_IRQ_HANDLED;

}

static struct hrtl_irq irq_latency_irq = {

.name = "latency_irq",

.handler = irq_latency_handler,

};

static int
proc_write_interrupt_latency(struct file *file, const char *buffer,

unsigned long count, void *data)

{

...

ret = kstrtou32(tmp, 16, &group_key);

...

hrtl_irq_init(&irq_latency_irq);

ret = hrtl_irq_connect(&irq_latency_irq, &irq_latency_hw_irq);

...

ret = hrtl_irq_register_group(&irq_latency_irq, group_key);

202

11.9. Real-Time Application Programming

...

}

Listing 11.40: HRTL benchmark threaded interrupt handler

Values between the main benchmark test and the measurements inside the inter-
rupt handler respectively threaded interrupt handler are transmitted via the proc
interface. The module will create a file /proc/interrupt_latency. A simple
read on that file will return the result of the last measurement. It is important
for test execution to bind the interrupt treatment of the parallel port interrupt
to a certain CPU. This is done inside the benchmark test executable by calling
libhrtl_system_request_irq().

With the introduced interrupt handler, measuring the interrupt latency is quite
simple. The implementation is similar to the native Linux interrupt latency benchmark
test (Listing 6.14). Only the test startup is different in order to create a partition
on a reserved CPU. The results of the benchmark test are shown in Table 11.24 and
Table 11.25.

Scenario Average Min Max Gap Deviation

Normal 4.684 3.347 6.093 2.747 0.677

CPU utilization 4.760 3.385 6.283 2.898 0.668

I/O utilization 4.815 3.392 6.723 3.331 0.727

Table 11.24.: Benchmark test results [μs]: HRTL interrupt latency (ISR)

Scenario Average Min Max Gap Deviation

Normal 4.642 3.257 6.069 2.812 0.686

CPU utilization 6.600 3.992 8.443 4.451 0.867

I/O utilization 4.763 3.315 7.423 4.108 0.727

Table 11.25.: Benchmark test results [μs]: Linux 3.5.7 interrupt latency (ISR)

The interrupt dispatch latency benchmark test is similar to the interrupt latency
benchmark test except for the time measurement points. For this test the first value
is captured within the kernel. The second time value is gathered when returning from
interrupt. The results of the interrupt dispatch latency benchmark test are provided
in Table 11.26 and Table 11.27.

The interrupt to task latency benchmark test is identical to the interrupt latency
benchmark test and is not listed here. The results of the test are shown in Table 11.28
and Table 11.29.

203

Chapter 11. Description of the HRT Linux Implementation

Scenario Average Min Max Gap Deviation

Normal 1.616 1.020 2.237 1.217 0.289

CPU utilization 1.610 0.990 2.286 1.296 0.319

I/O utilization 1.649 1.030 2.413 1.383 0.324

Table 11.26.: Benchmark test results [μs]: HRTL interrupt latency (dispatch)

Scenario Average Min Max Gap Deviation

Normal 1.429 0.926 2.120 1.194 0.303

CPU utilization 8.403 1.426 13.760 12.334 2.711

I/O utilization 1.708 0.947 5.048 4.101 0.836

Table 11.27.: Benchmark test results [μs]: Linux 3.5.7 interrupt latency (dispatch)

Scenario Average Min Max Gap Deviation

Normal 5.178 3.908 6.531 2.623 0.615

CPU utilization 5.212 3.815 6.778 2.963 0.677

I/O utilization 5.270 3.887 7.639 3.752 0.805

Table 11.28.: Benchmark test results [μs]: HRTL interrupt latency (SLIH)

Scenario Average Min Max Gap Deviation

Normal 4.961 3.498 6.546 3.048 0.699

CPU utilization 8.471 5.502 13.770 8.267 1.109

I/O utilization 5.140 3.618 7.748 4.129 0.838

Table 11.29.: Benchmark test results [μs]: Linux 3.5.7 interrupt latency (SLIH)

204

Part IV.
Evaluation

205

12
Benchmark Results Comparison

In the previous chapters a real-time extension for the Linux operating system was
introduced. The results of the evaluation framework from Chapter 5 for the new
extension and the systems discussed are compared in this chapter. Detailed information
on the test implementation for each operating system and their results can be found
in the related sections: RT-Preempt Section 6.5, HLRT Section 7.5, QNX Neutrino
Section 8.4 and HRTL Section 11.9.2.

Benchmark results are summarized in the tables included in the following paragraphs.
Time values are given in microseconds (μs). The first value for each measuring result
is the standard deviation from the average. The average is given in brackets beside
the standard deviation: σ(A). As described in Section 5.3, some tests were executed
in different scenarios which is constituted by the last column in each table.

Period HRTL HLRT RT-Preempt QNX Scen.

500μs 0.022 (499.952) 0.035 (499.936) 0.969 (499.931) 10.966 (499.807)

0.040 0.558 1.125 10.895 CPU

0.147 0.837 1.198 11.523 I/O

10ms 0.029 0.478 0.681 44.213

0.026 1.753 2.142 44.255 CPU

0.104 3.265 1.722 44.161 I/O

100ms 0.023 1.314 2.187 46.676

1sec 0.022 0.682 2.526 41.930

Table 12.1.: Period benchmark results overview [μs]

Table 12.1 provides the measuring results of the scheduling precision tests for
periodic tasks. Each system meets the expected period in the average with a difference
of some nano seconds. The results of the external measurement as described in
Section 5.4.1 are not presented here. They are included in the complete measurment
results and available to download.

The scheduling precision for a periodic task in the HRTL system is very high

207

Chapter 12. Benchmark Results Comparison

even in the utilization scenarios. The maximum deviation from an expected timer is
147 nanoseconds while the system is under heavy I/O load. Compared to the other
systems, the HRTL kernel does not lose precision with increasing timers. Especially
in the RT-Preempt kernel the timer precision deteriorates by a factor of 2.6 between
500 nanoseconds and 1 second timers.

The results presented in Table 12.2 show the time it takes to create a new process
(fork()) in the particular systems. For the HRTL kernel, the test was executed in
static partitions as well as in dynamic partitions. In the CPU utilization scenario
the required time slightly increases for the Linux based systems. This is due to the
fact that several tasks are added to the system within the scenario. However, what
is striking is the fact that the required time for task creation in the QNX Neutrino
system is much higher than the time required in Linux based systems.

Partition HRTL RT-Preempt QNX Scenario

static/none 1.436 (28.011) 2.228 (35.031)

1.612 (31.898) 1.478 (37.148) CPU

1.493 (27.861) 2.253 (35.269) I/O

dynamic 1.453 (28.916) 5.008 (186.772)

1.834 (33.295) 18.120 (170.843) CPU

1.777 (29.478) 31.121 (329.973) I/O

Table 12.2.: Process creation benchmark results overview [μs]

The HRTL system shows a very constant rate when preempting task execution.
In contrast to other systems, the CPU and I/O utilization scenarios have almost
no impact on the test. The highest effect can be seen in the QNX system between
an unloaded system and the I/O utilization scenario. Table 12.3 presents the task
preemption benchmark results for the HRTL and the QNX systems in two variants.
As described in Section 5.4.3.2, different synchronization events are used for these
systems. For both systems, using a special method for process synchronization offered
by the operating system, the required time for task preemption is almost halved.

Preempting a task that runs in a dynamic partition in the HRTL kernel takes
slightly longer compared to static partitions. The dynamic partition scheduler is more
complex than a scheduler module encapsulated in a static partition. The scheduler has
to make decisions according to the calculated CPU usage and decides which partition
should run in which time slot. The overhead can be seen in the benchmark results.

Table 12.4 summarises the results of the task switch latency tests. The task switch
latency is measured in four stages. In each stage the number of active tasks is increased
(first column). As can be seen, the time required for a task switch increases with more
involved processes. Like before in the task preemption benchmarks (Table 12.3) the
HRTL kernel has a very constant rate for switching tasks (within one stage). However,
the RT-Preempt system also provides a high reproducibility. Only the QNX system

208

Type Partition HRTL RT-Preempt QNX Scenario

signal static/none 0.002 (1.517) 0.222 (4.699)

0.003 (1.522) 0.253 (4.728) CPU

0.002 (1.529) 0.276 (4.776) I/O

signal dynamic 0.009 (2.047) 0.316 (1.004)

0.012 (2.058) 0.384 (1.030) CPU

0.010 (2.040) 0.850 (3.023) I/O

event static/none 0.011 (0.749)

0.014 (0.751) CPU

0.012 (0.752) I/O

event dynamic 0.010 (1.252) 0.128 (0.419)

0.015 (1.257) 0.231 (0.456) CPU

0.015 (1.258) 0.591 (1.461) I/O

Table 12.3.: Preemption benchmark results overview [μs]

seems to be affected by the utilization scenarios. Particularly a high I/O load of the
system has an impact of the task switch latency.

Tasks Partition HRTL RT-Preempt QNX Scenario

2 static/none 0.002 (0.471) 0.004 (0.617)

0.002 (0.469) 0.007 (0.616) CPU

0.007 (0.474) 0.004 (0.623) I/O

2 dynamic 0.008 (0.723) 0.176 (0.440)

0.009 (0.737) 0.196 (0.463) CPU

0.009 (0.726) 0.547 (1.129) I/O

16 static/none 0.014 (0.574) 0.016 (0.698)

16 dynamic 0.012 (0.828) 0.196 (0.465)

128 static/none 0.030 (0.778) 0.037 (0.910)

128 dynamic 0.024 (1.039) 0.583 (0.639)

512 static/none 0.109 (1.219) 0.114 (1.309)

512 dynamic 0.106 (1.488) 2.008 (0.824)

Table 12.4.: Task switch benchmark results overview [μs]

For the HRTL kernel task switches in dynamic partitions need more time compared
to static partitions. As already mentioned above, this is because of the overhead

209

Chapter 12. Benchmark Results Comparison

needed to balance dynamic partitions according to used CPU usage in the system.
Table 12.4 shows that the time required for a task switch increases with more

involved processes. This is caused by cache misses. The more processes there are
to switch between, the more cache misses occur. As the number of active processes
increases, the caching effect becomes evident since the thread context will no longer
be able to reside in the cache. To illustrate the effect of the cache, the task switch
benchmark tests were executed again for the HRTL system with cache disabled. The
results are presented in Table 12.5. It can be seen that the overall time requiered
for a task switch is much higher compared to Table 12.4, but the number of active
processes has no impact on the task switch time.

Tasks in the queue 2 16 128 512

Time requiered in μs 130.214 130.258 130.208 130.265

Table 12.5.: HRTL task switch results without caching

The results of the interrupt related benchmark test are shown in Table 12.6. Ac-
cording to the description in Section 5.2.1 the effect of interrupts is measured in three
different variants (first column). For the Linux based systems, the utilization scenarios
have a higher impact on the interrupt latency compared to the QNX system. QNX
shows a great stability on scheduling second level interrupt handlers. However, the
HRTL and the HLRT extension provide a better average time for interrupt latency of
low level interrupt handlers.

Type HRTL HLRT RT-Preempt QNX Scenario

ISR 0.677 (4.684) 0.690 (4.610) 0.651 (9.282) 0.436 (6.291)

0.668 (4.760) 0.782 (5.383) 0.657 (9.321) 0.380 (6.287) CPU

0.727 (4.815) 0.690 (4.625) 0.668 (9.378) 0.626 (5.871) I/O

dispatch 0.289 (1.616) 0.317 (1.387) 0.678 (6.573) 0.514 (1.348)

0.319 (1.610) 2.911 (5.861) 0.666 (6.616) 0.782 (1.429) CPU

0.324 (1.649) 0.322 (1.415) 0.682 (6.625) 1.130 (2.271) I/O

SLIH 0.615 (5.178) 0.639 (9.337) 0.997 (9.967)

0.677 (5.212) 0.649 (9.392) 1.092 (10.109) CPU

0.805 (5.270) 0.695 (9.460) 1.228 (10.607) I/O

Table 12.6.: Interrupt benchmark results overview [μs]

The benchmark test results presented in this chapter show the high potential of
Linux operating systems for real-time purposes. It should be mentioned that in the
discussion on the QNX Neutrino operating system and presentation of the benchmark
result some main features were not considered (e.g. QNX as distributed system). An
overall conclusion of this work is presented in the next chapter (Chapter 13).

210

13
Conclusion and Outlook

In this thesis, a new real-time patch for the Linux operating system has been developed.
Design decisions are mainly based on detailed analysis of well known real-time Linux
extensions and full real-time operating systems. This last chapter summarizes the
main results of this thesis and points out future work.

Over the past decades, significant efforts have been invested in the design and
development of real-time operating systems. These efforts have been carried out to
either develop such a system from scratch or to extend or adapt an existing operating
system such as Linux so as to enhance it with real-time capabilities. Our own work
follows the latter line of research. Though it has in principle been known that the
Linux kernel can be extended in such ways (RT-Preempt, HLRT and RT-Linux are
examples of such approaches) these systems have significant drawbacks in terms of
either functionality or performance.

Our own work builds on these works by integrating key features such as (dynamic
and static) partitioning, scheduling and asynchronous system-call handlers into the
Linux kernel in novel ways. We have shown that this approach can significantly
improve the performance of Linux providing real-time features and at the same time
extends the feature-set compared to existing approaches. The core technique that
leads to these improvements is the combination of partitioning with preemptible kernel
paths. Based on this modification of the kernel, features such as asynchronous system
call distribution can straightforwardly be implemented.

A consequence of our architecture is that scheduling strategies can dynamically be
loaded as kernel modules and applied to process partitions. Our implementation con-
tains several scheduling strategies, namely FIFO, Round-Robin and Rate-Monotonic.
The Rate-Monotonic scheduler, however, has been implemented only for static parti-
tioning. Thus, two opportunities for future research directions appear worthwhile:

1. Further scheduling strategies should be integrated and their impact should be
evaluated, as it is unclear which approach exhibits the best performance results in
practical applications.

2. In particular, deadline-oriented scheduling techniques such as Rate-Monotonic or
Earliest-Deadline-First scheduling should be evaluated for dynamic partitioning.

211

Chapter 13. Conclusion and Outlook

Currently, each partition is assigned exactly one scheduling time-slot. Generalizing
this scheme so that each partition may be associated with a collection of time-slots
provides additional flexibility such as executing tasks from one static partition on
several CPUs in parallel. Furthermore, a generalized mapping from partitions to
time-slots would support a greater flexibility for designing static scheduling plans,
since one partition could be included in one plan multiple times with different runtimes.
It should thus be evaluated how this generalization can effectively be integrated into
our kernel extension.

The system call distribution is based on work packages and system-call handlers. It
should be evaluated how the design of these handler threads can be extended, so that
occourring interrupts can also be managed as work packages. Treating interrupts as
work packages would provide a greater flexibility for prioritized interrupt handling.

212

Bibliography

[AB98] Alia Atlas and Azer Bestavros. Statistical rate monotonic scheduling. In
Proceedings of the 19th Real-Time Systems Symposium, pages 123–132.
IEEE Computer Society, 1998.

[Alt] Altreonic NV. OpenComRTOS. http://www.altreonic.com. Re-
trieved February 2012.

[BC05] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel - from
I/O ports to process management. O’Reilly Media, Inc., 3rd edition,
2005.

[Bla] BlackBerry Ltd. QNX Neutrino. http://www.qnx.com. Retrieved
February 2012.

[BM14] Ivan Cibrario Bertolotti and Gabriele Manduchi. Real-Time Embedded
Systems: Open-Source Operating Systems Perspective. CRC Press, Inc.,
2014.

[BMS93] Özalp Babaoğlu, Keith Marzullo, and Fred B. Schneider. A formalization
of priority inversion. Real-Time Systems, 5(4):285–303, 1993.

[BW09] Alan Burns and Andy Wellings. Real-Time Systems and Programming
Languages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-
Wesley Educational, 4th edition, 2009.

[CL07] Walter Cedeño and Phillip A. Laplante. An overview of real-time
operating systems. Journal of Laboratory Automation, 12(1):40–45,
2007.

[Com08] Portable Application Standards Committee. Portable Operating System
Interface - IEEE Std 1003.1-2008, September 2008.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
Device Drivers - where the Kernel meets the hardware. O’Reilly Media,
Inc., 3rd edition, 2005.

[DB11] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Comput. Surv., 43(4):35:1–35:44, 2011.

[DDCa] DDC-I, Inc. Deos 653. http://www.ddci.com/products_deos.

php. Retrieved December 2011.

[DDCb] DDC-I, Inc. HeartOS. http://www.ddci.com/products_

heartos.php. Retrieved December 2011.

213

BIBLIOGRAPHY

[Dev] Develer s.r.l. BeRTOS - not only a kernel. http://www.bertos.org.
Retrieved December 2011.

[Dip] Dipartimento di Ingegneria Aerospaziale. Real Time Application Inter-
face. http://www.rtai.org. Retrieved February 2012.

[dMC00] António J. Pessoa de Magalhães and Carlos J. A. Costa. Real-time
scheduling models: an experimental approach. In 4th Portuguese Con-
ference on Automatic Control. APCA, 2000.

[DW05] Sven-Thorsten Dietrich and Daniel Walker. The evolution of real-time
linux. In Proceedings of the 7th Real-Time Linux Workshop, 2005.

[eCo] eCosCentric Limited. eCos - embedded configurable operating system.
http://ecos.sourceware.org/. Retrieved November 2011.

[Efk05] Christof Efkemann. Development and evaluation of a hard real-time
scheduling modification for linux 2.6. Diplomarbeit, Universität Bremen,
2005.

[Efk14] Christof Efkemann. A Framework for Model-based Testing of Integrated
Modular Avionics. PhD thesis, Universität Bremen, 2014.

[Ene] Enea. OSE - Operating System Embedded. http://www.enea.com/
ose. Retrieved November 2011.

[Evi] Evidence Srl. ERIKA Enterprise. http://erika.tuxfamily.org.
Retrieved November 2011.

[Exp] Express Logic Inc. ThreadX - Real-Time Operating System. http:

//rtos.com/products/threadx. Retrieved February 2012.

[FCTS09] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio Scordino.
An EDF scheduling class for the Linux kernel. In 11th Real-Time Linux
Workshop, pages 1–8, 2009.

[FGR+90] Borko Furht, Dan Grostick, Guy Rabbat, John Parker, David Gluch,
and Meg McRoberts. Real-Time UNIX Systems: Design and Application
Guide. Kluwer Academic Publishers, 1990.

[GAGB01] Paolo Gai, Luca Abeni, Massimiliano Giorgi, and Giorgio Buttazzo. A
new kernel approach for modular real-time systems development. In
13th Euromicro Conference on Real-Time Systems, pages 199–206, 2001.

[Gar03] Tal Garfinkel. Traps and pitfalls: Practical problems in system call
interposition based security tools. In In Proceedings of the Network and
Distributed Systems Security Symposium, pages 163–176, 2003.

214

BIBLIOGRAPHY

[GPR04] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A delegating
architecture for secure system call interposition. In In Proceedings of
the Network and Distributed Systems Security Symposium. The Internet
Society, 2004.

[Gre] Green Hills Software. Integrity - Real-Time Operating System. http:
//www.ghs.com/products/rtos/integrity.html. Retrieved
January 2012.

[HBG+06] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. MINIX 3: a highly reliable, self-repairing operating system.
Operating Systems Review, 40(3):80–89, 2006.

[HGCD00] Wolfgang A. Halang, Roman Gumzej, Matjaz Colnaric, and Marjan
Druzovec. Measuring the performance of real-time systems. Real-Time
Systems, 18(1):59–68, 2000.

[Hil92] Dan Hildebrand. An architectural overview of qnx. Usenix Workshop
on Micro-Kernels & Other Kernel Architectures, 1992.

[JCLC06] Kerry Johnson, Jason Clarke, Paul Leroux, and Robert Craig. OS
Partitioning for Embedded Systems. QNX Software Systems, 2006.

[Jon91] R.S. Jones. The C Programmer’s Companion: ANSI C Library Functions.
Silicon Press, 1991.

[KB03] Hermann Kopetz and Günther Bauer. The time-triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, 1997.

[KP89] Rabindra P. Kar and Kent Porter. Rhealstone: A real-time benchmarking
proposal. Dr. Dobb’s Journal of Software Tools, 14(2):14–24, 1989.

[KW07] Robert Kaiser and Stephan Wagner. Evolution of the pikeos microkernel.
In 1st International Workshop on Microkernels for Embedded Systems,
pages 50–57, 2007.

[LAK92] J.C. C. Laprie, A. Avizienis, and H. Kopetz. Dependability: Basic
Concepts and Terminology. Springer-Verlag New York, Inc., 1992.

[Law] Kelvin Lawson. Atomthreads: Open Source RTOS. http://www.

atomthreads.com. Retrieved December 2011.

[Leh90] John P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In Proceedings of the Real-Time Systems Symposium,
pages 201–209. IEEE Computer Society, 1990.

215

BIBLIOGRAPHY

[Lei07] Bernhard Leiner. A partitioning operating system based on rtai-lxrt linux.
Master’s thesis, Technische Universität Wien, Institut für Technische
Informatik, 2007.

[Liu00] Jane W. S. Liu. Real-Time Systems. Pearson Education, 2000.

[LL73] Chang L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[Lov10] Robert Love. Linux Kernel Development. Addison-Wesley Professional,
3rd edition, 2010.

[LR80] Butler W. Lampson and David D. Redell. Experience with processes
and monitors in mesa. Commun. ACM, 23(2):105–117, 1980.

[LSOH07] Bernhard Leiner, Martin Schlager, Roman Obermaisser, and Bernhard
Huber. A comparison of partitioning operating systems for integrated
systems. Computer Safety, Reliability, and Security, 4680:342–355, 2007.

[Lyn] Lynx Software Technologies, Inc. LynxOS RTOS. http://

www.lynx.com/products/real-time-operating-systems/

lynxos-rtos/. Retrieved December 2011.

[MFL+09] Antonio Mancina, Dario Faggioli, Giuseppe Lipari, Jorrit N. Herder, Ben
Gras, and Andrew S. Tanenbaum. Enhancing a dependable multiserver
operating system with temporal protection via resource reservations.
Real-Time Systems, 43(2):177–210, 2009.

[MG] Ingo Molnar and Thomas Gleixner. RT_Preempt Patch for Linux.
https://rt.wiki.kernel.org. Retrieved January 2012.

[Mica] Micrium Embedded Software. μC/OS-III. http://micrium.com/

rtos/ucosiii. Retrieved December 2011.

[Micb] Microsoft Corporation. Windows Embedded CE. http://msdn.

microsoft.com/en-us/windowsembedded. Retrieved December
2011.

[Mol07] Ingo Molnar. Modular Scheduler Core and Completely Fair Scheduler
(CFS). https://lkml.org/lkml/2007/4/13/180, 2007.

[Mon] MontaVista Software. MontaVista Linux. http://www.mvista.

com/product_detail_mvl6.php. Retrieved February 2012.

[MT92] Clifford Mercer and Hideyuki Tokuda. Preemptibility in real-time
operating systems. In Proceedings of the Real-Time Systems Symposuim,
pages 78–87. IEEE Computer Society, 1992.

216

BIBLIOGRAPHY

[Noe05] Tammy Noergaard. Embedded Systems Architecture: A Comprehensive
Guide for Engineers and Programmers. Newnes, 2005.

[Ott06] Aliki Ott. System Testing in the Avionics Domain. PhD thesis, Univer-
sität Bremen, 2006.

[Pao10] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel IA-
32 and IA-64 Instruction Set Architectures. Intel Corporation, September
2010.

[Rad14] Dirk Radder. x86 Benchmark Framework. http://www.informatik.
uni-bremen.de/agbs/dirkr/HRTL/benchmark.tgz, November
2014.

[Rad15a] Dirk Radder. Hard Real-Time Linux - real-time extension kernel patch,
Version 0.18. http://www.informatik.uni-bremen.de/agbs/
dirkr/HRTL/patch-3.5.7-hrtl-0.18.gz, April 2015.

[Rad15b] Dirk Radder. Hard Real-Time Linux - user-space library, Version
0.2. http://www.informatik.uni-bremen.de/agbs/dirkr/

HRTL/libhrtl_0.2.tgz, April 2015.

[RB10] Sergio A. Rodriguez and Phillip M. Burt. A latency model of linux
2.6 for digital signal processing in real time. In 12th Real-Time Linux
Workshop, pages 1–8. OSADL, 2010.

[Rea] Real Time Engineers Ltd. FreeRTOS. http://www.freertos.org.
Retrieved January 2012.

[RH07] Steven Rostedt and Darren V. Hart. Internals of the rt patch. Proceedings
of the Linux Symposium, 2, June 2007.

[Rowa] RoweBots Limited. DSPnano Embedded Real Time Operating
System. http://www.rowebots.com/products/dspnano_rtos.
Retrieved November 2011.

[Rowb] RoweBots Research Inc. Unison RTOS for Microcontrollers. http://
www.rowebots.com/products/unison_rtos. Retrieved Febru-
ary 2012.

[RTC92] RTCA, Inc. DO-178B: Software Considerations in Airborne Systems
and Equipment Certification, December 1992.

[SEG] SEGGER Microcontroller Systems LLC. embOS - real-time operating
system. http://www.segger.com/embos.html. Retrieved Novem-
ber 2011.

[Sir] Giovanni Di Sirio. ChibiOS/RT. http://www.chibios.org. Re-
trieved December 2011.

217

BIBLIOGRAPHY

[SRS98] John A. Stankovic, Krithi Ramamritham, and Marco Spuri. Deadline
Scheduling for Real-Time Systems: EDF and Related Algorithms. Kluwer
Academic Publishers, 1998.

[Ste02] David B. Stewart. Measuring execution time and real-time performance.
In Proceedings of the Embedded Systems Conference, pages 1–15, 2002.

[SYS] SYSGO AG. PikeOS. http://www.sysgo.com/products/

pikeos-rtos-and-virtualization-concept. Retrieved Febru-
ary 2012.

[Sys05] QNX Software Systems. QNX Neutrino RTOS V6.3 System Architecture.
QNX Software Systems Co, for release 6.3.0 or later edition, 2005.

[Tan08] Andrew S. Tanenbaum. Modern Operating Systems. Pearson, 3rd edition,
2008.

[TNR90] Hideyuki Tokuda, Tatsuo Nakajima, and Prithvi Rao. Real-time mach:
Towards a predictable real-time system. In In Proceedings of the USENIX
MACH Symposium, pages 73–82. USENIX, 1990.

[Uni] University of Kansas. KU Real Time Linux. http://www.ittc.ku.
edu/kurt. Retrieved November 2011.

[Wik13] Source Wikipedia. X86 Architecture: X86, Ia-32, Pentium Fdiv Bug,
Hyper-Threading, Wintel, Icomp, X86-64, X86 Assembly Language, X86
Calling Conventions, X86 Virtualiza. General Books LLC, 2013.

[Win] Wind River Systems Inc. VxWorks. http://www.windriver.com/
products/vxworks. Retrieved December 2011.

[YB] Victor Yodaiken and Michael Barabanov. RTLinux. http://www.

rtlinuxfree.com. Retrieved December 2011.

[YB97] V. Yodaiken and M. Barabanov. A real-time linux. In Proceedings
of the Linux Applications Development and Deployment Conference
(USELINUX), volume 34, 1997.

[YMBYG08] K. Yaghmour, J. Masters, G. Ben-Yossef, and P. Gerum. Building
Embedded Linux Systems. O’Reilly Media, Inc., 2nd edition, 2008.

[Zwe02] Klaas-Henning Zweck. Kernelbasierte Echtzeiterweiterung eines Linux-
Multiprozessor-Systems. Diplomarbeit, Universität Bremen, 2002.

218

