

ASSESSING THE RELEVANCE OF APU

FOR HIGH PERFORMANCE

SCIENTIFIC COMPUTING

 Issam SAID issam.said@lip6.fr

Total / UPMC-LIP6

PhD candidate

Joint work with:

Henri CALANDRA , Total

Romain DOLBEAU, CAPS Entreprise

Pierre FORTIN, UPMC-LIP6

Jean-Luc LAMOTTE, UPMC-LIP6

3 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

CONTEXT

4 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

INTRODUCTION

 Study of depth imaging applications

on AMD Fusion APUs.

 Closely follow the road map of the

Fusion products.

 Try to determine how far does the

APU qualify for seismic applications.

5 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

INTRODUCTION | PCI Express bottleneck

Graphic Processing Units (GPUs) have developed very rapidly in recent years.

They become valuable choice for a wide range of scientific applications.

Despite the impressive computation power and fast internal memory of GPUs, applications with high CPU-

GPU communication requirements can be bottlenecked by the low transfer rate of the PCI Express bus.

For example: depth imaging applications on GPU.

APUs may address this problem by removing the PCI interconnection and combines both CPU and GPU

in a low power consuming chip.

 In the scope of this work, we only consider using the integrated GPU of an APU as it represents the major

computation power (Trinity: 77%).

But:

– Integrated GPUs are one order of magnitude less compute powerful than discrete GPUs

– Integrated GPUs have lower memory bandwidth than discrete GPUs

Can we expect the integrated GPUs to be more suitable for a certain range of applications (with

an appropriate problem size) than discrete GPUs?

6 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

INTRODUCTION | Work plan

 In this talk we investigate the relevance of APUs for High Performance scientific Computing.

We survey the different data placement strategies and show their impact on applications performances.

Then we use a 3D stencil OpenCL kernel (in single precision) to compare the APU performance with

CPU and discrete GPU.

We also use a more realistic application based on stencil computations : a wave propagation modeling

kernel, to the same comparative study.

7 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

HARDWARE SPECIFICATION

CPU Discrete GPUs APU Integrated GPUs

Micro-architecture Thuban Cayman Tahiti Llano
Beaverceek

Trinity
Devastator

Model Phenom HD6970 HD7970 A8-3850 A10-5700

Clock rate (GHz) 2.8 0.88 0.925 0.6 0.711

Compute units 6 24 32 5 6

Memory size (GB) 8 2 2 0.5 0.5

Peak bandwidth 50 176 256 25.6 25.6

Peak flops (Gflop/s) 1341 2700 3700 480 546

OpenCL 1.1, Windows Catalyst 12.1 driver, AMD APP SDK 2.6
1 considering one add operation concurrent to one multiply operation on each cpu clock

8 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

APU DATA PLACEMENT

STRATEGIES

9 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

APU MEMORY SYSTEM | Overview

The integrated GPU memory is a sub-partition of the system memory.

Compute units can access memory using 2 buses:

– GARLIC (fast bus): maximum theoretical transfer rate is about 25.6 GB/s.

– ONION (slow bus): maximum theoretical transfer rate is about 8 GB/s.

Memory objects can be shared between CPU (host) and the integrated GPU (device): zero-copy buffers

(available only with Windows drivers).

10 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

APU MEMORY SYSTEM | Memory locations

The device can access a limited memory space of the host and vice versa.

Within an APU, the possible memory locations are:

– cacheable memory: "c” (pinned for efficient data transfer between CPU and GPU)

– GPU memory: “g”

– Zero copy buffers: "z” in device-visible host memory

– USWC: "u” (Windows only), zero copy buffers with efficient contiguous CPU writes and efficient

GPU reads

– GPU persistent or host-visible device memory “p”

USWC: Uncacheable Speculative Write Combining

11 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

CPU TO CACHEABLE MEMORY «c»

12 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

CPU TO USWC «u»

13 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

CPU TO GPU PERSISTENT MEMORY «p»

14 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

GPU TO GPU MEMORY «g»

15 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

GPU TO USWC «u»

16 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

GPU TO PINNED HOST MEMORY «z»

17 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

DATA PLACEMENT ON APU

There are multiple choices for an application to transfer data between CPU and GPU within an APU :

– “cg”: explicit data copy from the CPU partition “c” to the GPU partition “g”

– “gc”: explicit data copy from the GPU partition “g” to the CPU partition “c”

– “z”: no data copy but slower GPU access

– “u”: no data copy but GPU read-only (via GARLIC)

– “p”: no data copy but slower CPU access

Data placement is a performance key factor on APUs.

The use of the GARLIC bus is strongly recommended.

 In order to leverage good performances, users need to find the most efficient data placement strategy for

input and output buffers of a GPU kernel.

18 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

DATA PLACEMENT BENCHMARK

We develop a benchmark that moves data back and forth the different locations of the APU

memory. We try different combinations , and use the following dataflow:

Map input buffer when needed “imap”

 Initialize input buffer “init”

Copy input to the GPU memory space when needed “iwrite”

Unmap input if already mapped “iunmap”

Run OpenCL kernel "ktime” (memory copy kernel)

Map output buffer if necessary "omap”

Copy output buffer from the GPU memory space when needed “oread”

Unmap output buffer if already mapped “ounmap”

Copy output buffer to a temporary host buffer to make sure that the data resides on the CPU memory

space “obackup”

19 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

BENCHMARKING RULES

 We use system wall-clock for timing.

 We run each OpenCL kernel multiple times (up to 40) after a device “warm up”.

 Numerical results of parallel computations are validated against those of serial computations.

20 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS

Llano – buffer size 128 MB Trinity – buffer size 128 MB

 430 290

21 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

ANALYSIS

Explicit data copy rate between CPU and integrated GPU:

– Is measured at 4 to 5.5 GB/s when using ONION

– Is measured at 12 to 13 GB/s when using GARLIC

The GPU reads from USWC are as fast as GPU reads from GPU memory.

CPU writes to GPU persistent memory are fast but reads are very slow (“obackup”) .

CPU contiguous writes to USWC (“u”) offer the highest bandwidth.

Zero copy buffers can be useful as they save memory space on the GPU memory.

GPU memory accesses to “z” (ONION) are slower than accesses to “u” (GARLIC) and “g”.

We select the following strategies:

– cggc

– uz

– ugc

– up

22 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

STENCIL COMPUTATIONS

23 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

DEFINITION

Stencil computations are a class of algorithms that constitute the

core of many scientific simulation codes.

Widely used in direct solution methods for PDE (Partial Differential

Equation) such as Finite Difference methods.

A linear summation of an input element and its neighboring values

weighed by specific coefficients (stencil coefficients).

A kth order in space stencil requires k input elements (neighbors)

on each dimension.

𝟑 ∗ 𝒌 + 𝟏 input elements are required in order to compute one

output.

We use an 8th order 3D space stencil in this work to compare

CPU/APU/GPU performance.

We apply the selected data placement strategies on APUs.

X

Z Y

24 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

OPENCL IMPLEMENTATION OF 3D STENCIL COMPUTATIONS

Kernel description

We apply a 2D work-item grid on the 3D domain

We first implement a scalar version:

– each work item computes X columns along

the Z dimension of the domain (X → ILP1)

– X is determined via auto-tuning (in most cases

X=2 or X=4)

– all memory accesses are performed on global

memory

 In the second version (vectorized) we vectorize

the code and use OpenCL float4 data type:

– depending on the device register file size, each

work-item computes 4X (X =2 or 4) columns

along the Z dimension

 Finally, we use domain tiling in local memory in

order to benefit from data reuse (local vectorized)

Blocking in local memory

 Input data is fetched, slice by slice, from global

memory to local memory and is efficiently reused

within a workgroup to compute multiple output

elements at a time

1 Instruction Level Parallelism

Z Local memory

Registers

25 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | CPU

 AMD Phenom TM II x6 1055T

 The domain domain size varies as

N x N x 32.

 OpenMP F90 code (without

domain tiling) compiled with Intel

Fortran Compiler.

 OpenCL is faster or as fast as

OpenMP .

 Thanks to CPU caches, vectorized

version is faster than the local

vectorized implementation.

26 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | Integrated GPUs

Llano – domain size = NxNx32

Trinity – domain size = NxNx32

 The local vectorized version outperforms the other implementations.

27 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | Discrete GPUs

Cayman – domain size = NxNx32

Tahiti – domain size = NxNx32

 The local vectorized version is the most efficient implementation for all architectures.

 For Tahiti the scalar version with (X=4) is almost as good as the vectorized version. This is due to the new scalar design

(Graphic Core Next). A local scalar version for Tahiti is a work in progress.

28 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

SNAPSHOTTING AND DATA PLACEMENT IMPACT

Stencil computations on GPU requires sending the computed data back to the CPU in order to perform

further tasks such as I/O. We denote this process “data snapshotting”.

We believe that the frequency of data snapshotting can also be a performance key factor and also an

additional parameter of our comparative study.

We run the 3D stencil kernel multiple times and measure its performance as a function of the snapshotting

frequency.

Also we run the 3D stencil kernel while taking into consideration multiple data placements.

29 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | Impact of data placement on APU performance

Llano, domain size: 1024x1024x32

Trinity, domain size: 1024x1024x32

 “v” denotes the vectorized version and “lv” denotes the local vectorized version.

 “cggc” with “lv” appears to be the most efficient data placement strategy for the stencil kernel.

30 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | CPU/APU/GPU comparison

Domain size: 64x64x32

Domain size: 1024x1024x32

 “comp-only” denotes performance measurements without taking into consideration the cost of data copies between the CPU

and the integrated GPU.

31 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

SEISMIC WAVE PROPAGATION

SIMULATION

32 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

WAVE PROPAGATION | Definition

 (Lisitsa & Lys, J. Comput. Appl. Math., 234(6), 1803-1809, 2010)

http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068

33 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

WAVE PROPAGATION | Numerical scheme

X

Z Y

34 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

WAVE PROPAGATION | Boundary conditions

We also consider boundary conditions.

The velocity is nil on the domain boundaries, which generates

spurious wave reflexions that spoil the solution everywhere in the

grid.

We use PML (Perfectly Matched Layer) method to absorb the

wave fields energy on the boundaries.

Factious absorbing layers on each grid dimension.

 Inside each absorbing layer a damping term is added to the wave

equation.

 𝟑 ∗ 𝒌 + 𝟏 + 𝟏 + 𝟕 input elements are required for one output (the

damping terms are computed using a 2nd order stencil).

X

Z Y

35 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

WAVE PROPAGATION | Implementation

Similar to the previous stencil computations.

The domain is divided in 2 subdomains:

– Inner domain: without PML damping

– Outer domain: with PML damping

 2 different numerical computations.

We apply the same optimizations and data placement

strategies as discussed previously.

APU/GPU computations can be subject of branch

divergence when work-items of the same wave-front

are assigned to both inner domain and outer domain

which impacts the kernel performance (10% of

performance enhancement on Tahiti when switching D

from18 to16) .

The OpenCL kernel is tuned enough for a comparative

study between the described architectures (further

optimizations are in progress).

D

36 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | CPU

AMD Phenom TM II x6 1055T

 The domain domain size varies as N x N x N.

 OpenMP (F90 code compiled with Intel Fortran

Compiler).

 On the CPU the vectorized version is the most

efficient version.

 OpenCL is faster than OpenMP (without domain

tiling) on the CPU.

37 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | Integrated GPUs

Llano – domain size = NxNxN

Trinity – domain size = NxNxN

 The local vectorized version is the most efficient implementation for APUs.

38 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | Discrete GPUs

Cayman – domain size = NxNxN

Tahiti – domain size = NxNxN

 The local vectorized version is the most efficient implementation for Cayman but not for Tahiti which is unexpected.

39 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | Impact of data placement on APU performance

Llano, domain size = 320x320x320

Trinity, domain size = 320x320x320

 “v” denotes the vectorized version and “lv” denotes the local vectorized version.

 The max between “uz” and “cggc” with “lv” is the most efficient data placement strategy for the wave propagation kernel.

40 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | CPU/APU/GPU comparison

Domain size: 64x64x64

Domain size: 320x320x320

 “comp-only” denotes performance measurements without taking into consideration the cost of data copies between the CPU

and the integrated GPU.

41 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

CONCLUSION

42 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

CONCLUSION

Considering the computation times only, we obtain good OpenCL performances on CPU, integrated GPU,

and discrete GPU.

Current APUs stencil computations performance cannot outperform discrete GPUs.

The stencil optimization techniques are not sufficient for the wave modeling kernel (PML damping

computations are costly).

Data placement strategies are a key performance factor for APUs. We will apply the different strategies in

the upcoming APUs in order to track their impact on application performance.

Power consumption should be taken into consideration when comparing CPU/APU/GPU OpenCL

performances: see next slide.

Future work:

We will consider APU hybrid implementations.

We will consider more accurate techniques for measuring power consumption.

HSA.

43 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

EXPERIMENTAL RESULTS | Performance and power consumption (TDP)

Stencil kernel, domain size: 320x320x320

Seismic wave kernel, domain size: 320x320x320

 We consider the following TDP values: 100W for the CPU and APUs, and 250W for discrete GPUs.

 APUs outperform discrete GPUs for high frequencies of snapshot retrieval.

44 | Assessing the relevance of APU for high performance scientific computing | June 13, 2012

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in

this presentation are for informational purposes only and may be trademarks of their respective owners.

[For AMD-speakers only] © 2012 Advanced Micro Devices, Inc.

[For non-AMD speakers only] The contents of this presentation were provided by individual(s) and/or company listed on the title

page. The information and opinions presented in this presentation may not represent AMD’s positions, strategies or opinions.

Unless explicitly stated, AMD is not responsible for the content herein and no endorsements are implied.

