


ASSESSING THE RELEVANCE OF APU 

FOR HIGH PERFORMANCE 

SCIENTIFIC COMPUTING 
 

 Issam SAID                                                                              issam.said@lip6.fr 

Total / UPMC-LIP6 

PhD candidate 

 

Joint work with: 

Henri CALANDRA ,   Total 

Romain DOLBEAU,   CAPS Entreprise  

Pierre FORTIN,           UPMC-LIP6    

Jean-Luc LAMOTTE, UPMC-LIP6 

 



3 |  Assessing the relevance of APU for  high performance  scientific computing   |  June 13, 2012 

CONTEXT    
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INTRODUCTION 

 Study of depth imaging applications  

on AMD Fusion APUs. 

 Closely follow the road map of the 

Fusion products. 

 Try to determine how far does the 

APU qualify for seismic applications. 
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INTRODUCTION | PCI Express bottleneck 

Graphic Processing Units (GPUs) have developed very rapidly in recent years. 

They become valuable choice for a wide range of scientific applications.  

Despite the impressive computation power and fast internal memory of GPUs, applications with high CPU-

GPU communication requirements  can be bottlenecked by the low transfer rate  of the PCI Express bus. 

For example: depth imaging applications on GPU. 

APUs may address this problem by removing the PCI interconnection and  combines both CPU and GPU 

in a low power consuming chip. 

 In the scope of this work, we only consider using the integrated GPU of an APU as it represents the major 

computation power (Trinity: 77% ). 

But: 

– Integrated GPUs are one order of magnitude  less compute powerful than discrete GPUs  

– Integrated GPUs have lower memory bandwidth than discrete GPUs 

Can we expect  the integrated  GPUs to be more suitable for a certain range of applications  (with 

an appropriate problem size) than discrete GPUs? 
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INTRODUCTION | Work plan 

 In this talk we investigate the relevance of APUs for High Performance scientific Computing. 

We survey the different data placement  strategies and show their impact on applications performances. 

Then we use a 3D  stencil OpenCL  kernel (in single precision) to compare the APU performance with  

CPU and discrete GPU. 

We also use a more realistic application based on stencil computations : a wave propagation modeling 

kernel, to the same comparative study. 
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HARDWARE SPECIFICATION 

CPU Discrete GPUs APU Integrated GPUs 

Micro-architecture Thuban Cayman Tahiti Llano 
Beaverceek 

Trinity 
Devastator 

Model Phenom HD6970 HD7970 A8-3850 A10-5700 

Clock rate (GHz) 2.8 0.88 0.925  0.6 0.711 

Compute units  6 24 32 5 6 

Memory size (GB) 8 2 2 0.5 0.5 

Peak bandwidth 50 176 256 25.6 25.6 

Peak flops (Gflop/s) 1341 2700 3700 480 546 

OpenCL 1.1, Windows Catalyst 12.1 driver, AMD APP SDK 2.6 
1 considering one add operation concurrent to one multiply operation on each cpu clock 
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APU DATA PLACEMENT 

STRATEGIES 
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APU MEMORY SYSTEM  | Overview 

 

 

 

 

 

The integrated GPU memory is a sub-partition of the system memory. 

Compute units can access memory using 2 buses: 

– GARLIC (fast bus): maximum theoretical transfer rate is about  25.6 GB/s. 

– ONION (slow bus): maximum theoretical transfer rate  is about 8 GB/s. 

Memory objects can be shared between CPU (host) and the integrated GPU (device):  zero-copy buffers 

(available only with Windows drivers). 
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APU MEMORY SYSTEM  | Memory locations 

 

 

 

 

 

The device  can access a limited memory space of the host and vice versa. 

Within an APU, the possible memory locations are: 

– cacheable memory: "c” (pinned for efficient data transfer between CPU and GPU) 

– GPU memory: “g” 

– Zero copy buffers: "z” in device-visible host memory 

– USWC: "u” (Windows only),  zero copy buffers with efficient   contiguous CPU writes and efficient  

GPU reads 

– GPU persistent or host-visible device memory  “p” 

 

 

USWC: Uncacheable Speculative Write Combining 
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CPU TO CACHEABLE MEMORY «c» 

 

 

 



12 |  Assessing the relevance of APU for  high performance  scientific computing   |  June 13, 2012 

CPU TO USWC «u» 
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CPU TO GPU PERSISTENT MEMORY «p» 
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GPU TO GPU MEMORY «g» 
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GPU TO USWC «u» 
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GPU TO PINNED HOST MEMORY «z» 
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DATA PLACEMENT  ON APU 

 

 

There are multiple choices for an application to transfer data  between CPU and GPU within an APU : 

– “cg”: explicit data copy from the CPU partition “c” to the GPU partition “g” 

– “gc”: explicit data copy from the GPU partition “g” to the CPU partition “c” 

– “z”: no data copy but slower  GPU access   

– “u”: no data copy but GPU read-only (via GARLIC) 

– “p”: no data copy but slower CPU access 

Data placement is a performance key factor on APUs. 

The use of the GARLIC bus is strongly recommended. 

 In order to leverage good performances, users need to find the most efficient data placement strategy  for 

input and output buffers of a GPU kernel. 
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DATA PLACEMENT BENCHMARK   

 

We develop a benchmark that moves data back and forth  the different locations of the  APU 

memory. We try different combinations , and  use the following  dataflow:  

Map input buffer when needed “imap” 

 Initialize input buffer “init” 

Copy input to the GPU memory space when needed “iwrite” 

Unmap input if already mapped “iunmap” 

Run OpenCL kernel "ktime” (memory copy kernel) 

Map output buffer if necessary "omap” 

Copy output buffer from the GPU memory space when needed “oread” 

Unmap output buffer if already mapped “ounmap” 

Copy output buffer to a temporary host buffer to make sure that the data resides on the CPU memory 

space “obackup” 
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BENCHMARKING RULES 

 We use system wall-clock for timing. 

 We run each OpenCL kernel multiple times (up to 40) after a device “warm up”. 

 Numerical results of parallel computations are validated  against those of serial computations. 
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EXPERIMENTAL RESULTS 

Llano – buffer size 128 MB Trinity – buffer size 128 MB 

 430 290 
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ANALYSIS  

Explicit data copy rate between CPU and integrated GPU: 

– Is measured at 4 to 5.5 GB/s when using ONION 

– Is measured at 12 to 13 GB/s when using GARLIC 

The GPU reads from USWC are as fast as GPU reads  from GPU memory. 

CPU writes to GPU persistent  memory are fast  but reads  are very slow (“obackup”) . 

CPU contiguous writes to USWC (“u”)  offer the highest  bandwidth. 

Zero copy buffers can be useful as they save memory space on the GPU memory.  

GPU memory accesses to “z” (ONION) are slower than accesses to “u” (GARLIC) and “g”.  

We select the following strategies: 

– cggc 

– uz 

– ugc 

– up 
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STENCIL COMPUTATIONS 
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DEFINITION 

Stencil computations are a class of algorithms that constitute the 

core of many scientific simulation codes. 

Widely used in direct solution methods for PDE (Partial Differential 

Equation) such as Finite Difference methods. 

A linear summation of an input element and its neighboring values 

weighed by specific coefficients (stencil coefficients). 

A kth order in space stencil requires k input elements (neighbors) 

on each dimension. 

𝟑 ∗ 𝒌 + 𝟏 input elements are required in order to compute one 

output. 

We use an 8th order 3D space stencil in this work to compare 

CPU/APU/GPU performance. 

We apply the selected data placement strategies on APUs.  

X 

Z Y 
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OPENCL IMPLEMENTATION OF 3D STENCIL COMPUTATIONS 

Kernel description 

We apply a 2D  work-item grid on the 3D domain  

We first implement a scalar version: 

– each work item computes  X columns along  

the Z dimension of the domain (X    → ILP1    )   

– X is determined via auto-tuning (in most cases  

X=2 or X=4) 

– all memory accesses  are performed on global  

memory 

 In the second version (vectorized) we vectorize 

the code and use OpenCL float4  data type: 

– depending on the device register file size, each  

work-item computes 4X (X =2 or 4) columns 

along the  Z dimension 

  Finally, we use  domain tiling in local memory in 

order to benefit from data reuse (local vectorized) 

 

Blocking in local memory 

 Input data is fetched, slice by slice, from  global 

memory to local memory and is  efficiently reused 

within a workgroup  to compute multiple output 

elements at a time 

 

1 Instruction Level Parallelism 

Z Local memory 

Registers 
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EXPERIMENTAL RESULTS | CPU 

 AMD Phenom TM II x6 1055T 

 The domain domain size varies as 

N x N x 32. 

  OpenMP F90 code (without 

domain tiling) compiled with Intel 

Fortran Compiler. 

 OpenCL is faster or as fast as 

OpenMP . 

 Thanks to CPU caches, vectorized  

version is faster than the local 

vectorized  implementation. 
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EXPERIMENTAL RESULTS | Integrated GPUs 

Llano – domain size = NxNx32 

 

Trinity – domain size = NxNx32  

 

 The local vectorized version outperforms the other implementations. 
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EXPERIMENTAL RESULTS | Discrete GPUs 

Cayman – domain size = NxNx32 

 

Tahiti  – domain size = NxNx32 

 

 The local vectorized version is the most efficient implementation for  all architectures.  

  For Tahiti   the scalar  version with (X=4) is almost as good as the vectorized version. This is due to the new scalar design 

(Graphic Core Next). A local scalar version for Tahiti is a work in progress. 
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SNAPSHOTTING AND DATA PLACEMENT IMPACT 

  

Stencil computations on GPU requires  sending the computed  data back to the CPU in order to perform 

further tasks such as I/O. We denote this process “data snapshotting”. 

We believe that the frequency of data snapshotting can also be a performance key factor and also an 

additional parameter of our comparative study. 

We run the 3D stencil kernel multiple times and measure its performance as a function of the snapshotting 

frequency. 

Also we run the 3D stencil kernel while taking into consideration multiple data placements.  
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EXPERIMENTAL RESULTS | Impact of data  placement on APU performance 

Llano, domain size: 1024x1024x32 

 

Trinity, domain  size: 1024x1024x32 

 

 “v” denotes the vectorized version and “lv” denotes the local vectorized version. 

  “cggc” with “lv” appears to be the most efficient data placement strategy for the stencil kernel. 
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EXPERIMENTAL RESULTS | CPU/APU/GPU comparison 

Domain size: 64x64x32 

 

Domain  size: 1024x1024x32 

 

 “comp-only” denotes performance measurements without taking into consideration the cost of data copies between the CPU 

and the integrated GPU. 
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SEISMIC WAVE PROPAGATION 

SIMULATION  
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WAVE PROPAGATION | Definition  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       (Lisitsa & Lys, J. Comput. Appl. Math., 234(6), 1803-1809, 2010) 

 

http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
http://www.sciencedirect.com/science/article/pii/S0377042709005068
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WAVE PROPAGATION | Numerical scheme 

X 

Z Y 
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WAVE PROPAGATION | Boundary conditions 

We also consider boundary conditions. 

The velocity is nil on the domain boundaries, which generates 

spurious wave reflexions that spoil the solution everywhere in the 

grid. 

We use PML  (Perfectly Matched Layer) method  to absorb the 

wave fields energy on the boundaries. 

Factious absorbing layers on each grid dimension.  

 Inside each absorbing layer a damping term is added to the wave 

equation. 

 𝟑 ∗ 𝒌 + 𝟏 + 𝟏 + 𝟕  input elements are required for one output (the 

damping terms are computed using a 2nd order stencil). 

 

 

 

 

X 

Z Y 
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WAVE PROPAGATION | Implementation 

 

 

 

 

 

Similar to the previous stencil computations. 

The domain is divided in 2 subdomains: 

– Inner domain: without PML damping 

– Outer domain: with PML damping 

 2 different numerical computations. 

We apply the same optimizations and  data placement 

strategies as discussed previously. 

APU/GPU computations can be subject of branch 

divergence when work-items of the same wave-front 

are assigned to both inner domain and  outer domain 

which impacts the kernel performance (10% of 

performance enhancement on Tahiti when switching D 

from18 to16) .  

The OpenCL kernel is tuned enough for a comparative 

study between the described architectures (further 

optimizations are in progress).  

 

D 
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EXPERIMENTAL RESULTS | CPU 

AMD Phenom TM II x6 1055T 

 The domain domain size varies as N x N x N. 

 OpenMP (F90 code compiled with Intel Fortran 

Compiler). 

 On the CPU the vectorized version is the most 

efficient version. 

 OpenCL is faster than OpenMP (without domain 

tiling) on the CPU. 
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EXPERIMENTAL RESULTS | Integrated GPUs 

Llano – domain size = NxNxN 

 

Trinity – domain size = NxNxN  

 

 The local vectorized version is the most efficient implementation for  APUs. 
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EXPERIMENTAL RESULTS | Discrete GPUs 

Cayman – domain size = NxNxN 

 

Tahiti  – domain size = NxNxN 

 

 
 The local vectorized version is the most efficient implementation for  Cayman but not for Tahiti which is unexpected. 
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EXPERIMENTAL RESULTS | Impact of data  placement on APU performance 

Llano, domain size = 320x320x320  

 

 

 

Trinity, domain size = 320x320x320 

 

 “v” denotes the vectorized version and “lv” denotes the local vectorized version. 

  The max between “uz” and “cggc” with “lv” is the most efficient data placement strategy for the wave propagation kernel. 
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EXPERIMENTAL RESULTS | CPU/APU/GPU comparison 

Domain size: 64x64x64 

 

Domain  size: 320x320x320 

 

 “comp-only” denotes performance measurements without taking into consideration the cost of data copies between the CPU 

and the integrated GPU. 
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CONCLUSION 
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CONCLUSION 

Considering the computation times only, we obtain good OpenCL  performances on CPU, integrated GPU, 

and discrete GPU. 

Current APUs stencil computations performance cannot outperform discrete GPUs. 

The stencil optimization techniques are not sufficient for the wave modeling kernel (PML damping 

computations are costly). 

Data placement  strategies are a key performance factor for APUs. We will apply the different strategies in 

the upcoming APUs in order to track their impact on application performance.  

Power consumption should be taken into consideration  when comparing  CPU/APU/GPU OpenCL 

performances: see next slide. 

 

Future work: 

We will consider APU hybrid implementations. 

We will consider more accurate techniques for measuring power consumption. 

HSA. 
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EXPERIMENTAL RESULTS | Performance and power consumption (TDP) 

Stencil kernel, domain size: 320x320x320 

 

Seismic wave kernel, domain  size: 320x320x320 

 

 

 

  We consider the following TDP values: 100W for the CPU and APUs, and 250W for discrete GPUs.  

 APUs outperform discrete GPUs for high frequencies of snapshot retrieval. 
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