AMD's rich history in server-class silicon includes a number of notable firsts including the first 64-bit x86 architecture and true multi-core x86 processors. AMD adds to that history by announcing that its revolutionary AMD Opteron™ A-series 64-bit ARM processors, codenamed “Seattle,” will be sampling this quarter.

AMD Opteron A-Series processors combine AMD's expertise in delivering server-class silicon with ARM's trademark low-power architecture and contributing to the Open Source software ecosystem that is rapidly growing around the ARM 64-bit architecture. AMD Opteron A-Series processors make use of ARM's 64-bit ARMv8 architecture to provide true server-class features in a power efficient solution.

AMD plans for the AMD Opteron™ A1100 processors to be available in the second half of 2014 with four or eight ARM Cortex A57 cores, up to 4MB of shared Level 2 cache and 8MB of shared Level 3 cache. The AMD Opteron A-Series processor supports up to 128GB of DDR3 or DDR4 ECC memory as unbuffered DIMMs, registered DIMMs or SODIMMs.

The ARMv8 architecture is the first from ARM to have 64-bit support, something that AMD brought to the x86 market in 2003 with the AMD Opteron processor. Not only can the ARMv8-based Cortex A-57 architecture address large pools of memory, it has been designed from the ground up to provide the optimal balance of performance and power efficiency to address the broad spectrum of scale-out data center workloads.

With more than a decade of experience in designing server-class solutions silicon, AMD took the ARM Cortex A57 core, added a server-class memory controller, and included features resulting in a processor that meets the demands of scale-out workloads. A requirement of scale-out workloads is high performance connectivity, and the AMD Opteron A1100 processor has extensive integrated I/O, including eight PCI Express Gen 3 lanes, two 10 GB/s Ethernet and eight SATA 3 ports.

Scale-out workloads are becoming critical building blocks in today's data centers. These workloads scale over hundreds or thousands of servers, making power efficient performance critical in keeping total cost of ownership (TCO) low. The AMD Opteron A-Series meets the demand of these workloads through intelligent silicon design and by supporting a number of operating system and software projects.

As part of delivering a server-class solution, AMD has invested in the software ecosystem that will support AMD Opteron A-Series processors. AMD is a gold member of the Linux Foundation, the organisation that oversees the development of the Linux kernel, and is a member of Linaro, a significant contributor to the Linux kernel. Alongside collaboration with the Linux Foundation and Linaro, AMD itself is listed as a top 20 contributor to the Linux kernel. A number of operating system vendors have stated they will support the 64-bit ARM ecosystem, including Canonical, Red Hat and SUSE, while virtualization will be enabled through KVM and Xen.

Operating system support is supplemented with programming language support, with Oracle and the community-driven OpenJDK porting versions of Java onto the 64-bit ARM architecture. Other popular languages that will run on AMD Opteron A-Series processors include Perl, PHP, Python and Ruby. The extremely popular GNU C compiler and the critical GNU C Library have already been ported to the 64-bit ARM architecture.

Through the combination of kernel support and development tools such as libraries, compilers and debuggers, the foundation has been set for developers to port applications to a rapidly growing ecosystem.

As AMD Opteron A-Series processors are well suited to web hosting and big data workloads, AMD is a gold sponsor of the Apache Foundation, the organisation that manages the Hadoop and HTTP Server projects. Up and down the software stack, the ecosystem is ready for the data center revolution that will take place when AMD Opteron A-Series are deployed.

Soon, AMD's partners will start to realise what a true server-class 64-bit ARM processor can do. By using AMD's Opteron A-Series Development Kit, developers can contribute to the fast growing software ecosystem that already includes operating systems, compilers, hypervisors and applications. Combining AMD's rich history in designing server-class solutions with ARM's legendary low-power architecture, the Opteron A-Series ushers in the era of personalised performance.

 

Lawrence Latif is the Manager of Technical Communications at AMD. His postings are his own opinions and may not represent AMD’s positions, strategies or opinions. Links to third party sites, and references to third party trademarks, are provided for convenience and illustrative purposes only. Unless explicitly stated, AMD is not responsible for the contents of such links, and no third party endorsement of AMD or any of its products is implied. This blog contains forward-looking statements concerning AMD, and features of AMD’s future products, the ability of AMD to win in traditional server segments with new Arm-based products in 2014, the benefits from AMD’s new technology partnerships and the timing of future products that incorporate AMD’s products, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects," and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this document are based on current beliefs, assumptions and expectations, speak only as of the date of this blog and involve risks and uncertainties that could cause actual results to differ materially from current expectations.